„Szerkesztő:Nagy Vilmos/Jelek Előadásjegyzet - 2017 (ősz)” változatai közötti eltérés

A VIK Wikiből
Ugrás a navigációhoz Ugrás a kereséshez
115. sor: 115. sor:
 
===== Konvolúció =====
 
===== Konvolúció =====
 
Tegyük fel, hogy a rendszerek válasza is szuperpozíciónálható. Továbbá tegyük fel, hogy egy rendszer egységimpulzusra adott válaszát ''h[k]''-val jelöljük.
 
Tegyük fel, hogy a rendszerek válasza is szuperpozíciónálható. Továbbá tegyük fel, hogy egy rendszer egységimpulzusra adott válaszát ''h[k]''-val jelöljük.
<br/><small>'''Megjegyzés:''' Ez így általánosságban nem igaz. Biztosan szükséges, hogy a rendszer lineáris, s időinvariáns legyen (lehet, még ez sem elég). Ezekről később lesz szó, ott érdemes végiggondolni,
+
<br/><small>'''Megjegyzés:''' Ez így általánosságban nem igaz. Biztosan szükséges, hogy a rendszer lineáris, s időinvariáns legyen (lehet, még ez sem elég). Ezekről később lesz szó, ott érdemes végiggondolni, miért is van ezekre szükség - s hogy ennyi elég-e.</small>
miért is van ezekre szükség - s hogy ennyi elég-e.</small>
 
  
 
Na, és itt jön a magic, mert (az előző példa gondolatmenetét részben folytatva) ezek után ki merjük mondani, hogy a rendszer <math>y[k]</math>:
 
Na, és itt jön a magic, mert (az előző példa gondolatmenetét részben folytatva) ezek után ki merjük mondani, hogy a rendszer <math>y[k]</math>:

A lap 2017. szeptember 4., 18:46-kori változata

Előszó: Amíg nem megy a LaTeX képletek renderelése a wikin, addig ezt feltöltöm PDF-ben is, ide: File:jelek_jegyzet_vilmosnagy_latex.pdf

A félévben tervezem letisztázni ide a Jelek (Rendszerelmélet) jegyzeteimet - lehetőleg valami olyan formában, ami az első ZH előtt segít rendesen összefoglalni az anyagot, s egy ponthatáros kettest összehoz.

Ha a félév végéig sikerül rendesen csinálnom (igyekszem :-)), s legalább az első ZHig (~hetedeik hét) le van tisztázva az anyag, akkor közkincsé teszem, s mehet a Rendszerelmélet lap alá. Addig viszont szeretném a személyes játszóteremnek meghagyni (nemhiába szerkesztői subpage ez), s bármit hezitálás nélkül visszavonok, ami nem tetszik. Ha hibát találsz, vagy kérdésed van, a Vitalapon állok rendelkezésre. (vagy a vilmos.nagy@outlook.com email címen)

1. előadás - Bevezetés

Bevezetés

A tárgy keretében fizikai folyamatokat szeretnénk leírni. A fizikait értsd, hogy kb. bármilyen olyan folyamatot, amiben mérhető mennyiségek szerepelnek. Ezeket a mennyiségeket változókkal írjuk le. Ezekből a változókból, ha fizikai dimenzió nélkül kezeljük, lesznek a jeleink. Ilyen folyamat lehet, például:

  • Az egyetem egyes évfolyamaira beiratkozott hallgatók száma.
  • Híd deformációja a terhelés függvényében
  • Lift sebessége a magasság függvényében, ha az ötödik emeletre akarunk menni.
  • stb.

Rendszerek ábrázolása

Az alábbi ábrán egy egyszerű rendszer ábrázolása látható.

(szerk.: Remélem nem csesztem el benne semmit, az x[k], meg x[k+1] jelölés nem tuti. http://draw.io-n rajzolva, forrás itt: https://drive.google.com/open?id=0BzSJOKSJE6qqUUlwZVk0T3JYYUU )

(szerk.: Amíg nincs LaTeX a vikwiki-n, s PDF-ben olvasod, addig a kép itt: Jelek_jegyzet_vilmosnagy_rendszerek_%C3%A1br%C3%A1zol%C3%A1sa.png)

Példa

A fenti rajz lehet az ábrája az alábbi rendszer-modellnek.

Egy egyszerű egyetemet, s az egyetemen tanuló hallgatók számát szeretnénk modellezni. Négy jelet veszünk fel: x1, x2, x3, y. Ebből az x-ek az adott évben az adott évfolyamra járó hallgatók száma, míg az y az adott évben végző hallgatók száma. Az x1 értéke egyenlő az adott évben beiratkozó hallgatók és az előző évben az első évfolyamot nem teljesítő hallgatók számával. Amennyiben az újonnan beiratkozókat u-val jelöljük, míg az egyes évfolyamokon megbukottakat a-val, sikeresen teljesítőket b-vel (ezt most önkényesen jelölöm a illetve b-vel):

  • [math]x_1[k+1] = a_1 \cdot x_1[k] + u[k+1] [/math]
  • [math]x_2[k+1] = a_2 \cdot x_2[k] + b_1 \cdot x_1[k] [/math]
  • [math]x_3[k+1] = a_3 \cdot x_3[k] + b_2 \cdot x_2[k] [/math]
  • [math]y[k] = b_3 \cdot x_3[k][/math]

(szerk.: remélem semmit nem írtam el, de ezt a gyakorlat után még utánaszámolom. Amíg nem javítják meg a wiki-t, addig itt le tudod renderelni ezeket: http://quicklatex.com/)

Ebből ilyen szép táblázatot lehet rajzolni, ha:

  • [math]u[k] = 500[/math] minden k-ra
  • [math]a_n = 0.3[/math] minden n-re
  • [math]b_n = 0.65[/math] minden n-re

(vegyük észre, hogy [math]a_k + b_k[/math] nem szükségszerűen 1. A maradékot kirúgták, elment, etc. belefér a modellbe).

Félév (k) Elsőévesek Másodévesek Harmadévesek Végzők
1 500 0 0 0
2 650 325 0 0
3 695 520 211 0
4 709 608 401 137
5 713 643 515 260
5 714 656 572 335

Nem számolom tovább, de ha ügyes vagy, néhány félév múlva egy ~konstans értékre kéne beállnia a végzősök számának (~400 körül, valahol). Ez a tárgy ilyen (meg ennél bonyolultabb) modellekről, s azoknak az ennél egyszerűbb kiszámolásáról fog szólni.

Egyébként such wow, a fenti felállásban az u a gerjesztés, az y pedig a felvázolt rendszer válasza, s primitív rendszereket kell is majd hasonlóan számolgatni a háziban.

Jelek osztályozása

Millióféleképpen lehet jeleket osztályozni. Ebből én csak azt jegyzetelem le, amivel foglalkozik a tárgy, a többi nem érdekes.

Beszélhetünk időben folytonos, vagy diszkrét idejű jelekről.

  • Folytonos idejű, jelölése [math]x(t)[/math]
  • Diszkrét idejű, jelölése [math]x[t][/math]

Továbbá általában determinisztikus, belépő típusú jelekkel foglalkozik a tárgy.

  • Determinisztikus: minden értéke megjósolható (nem véletlenszerű)
    ez nyilván nem így hangzik matematikusul, de nekünk jó lesz
  • Belépő: [math]x(t) = 0[/math] minden [math]t\gt 0[/math] esetén.

Említés szintjén előkerül sztochasztikus (nem determinisztikus), nem belépő, x-ben belépő, diszkrét értékű, etc. jelek. Ezekkel nem foglalkozik a tárgy, de kis gondolkodással megfejtheted, melyik micsoda.

Továbbá megkülönböztetünk páros és páratlan jeleket:

  • páros: [math]x(t) = x(-t)[/math] (az x tengelyre szimmetrikus)
  • páratlan: [math]x(t) = -x(-t)[/math] (az origóra szimmetrikus)

Állítás: Minden jel felírható egy páros és egy páratlan jel összegére.
Bizonyítás: Nem bizonyítjuk.

Jelek felírása

Diszkrét idejű jelek esetén

Speciális jelek
Egységimpulzus

[math]\delta[k]=\begin{cases} 1 & k=0 \\ 0 &\text{egyébként}\end{cases}[/math]

Egységugrás

[math]\epsilon[k]=\begin{cases} 0 & k\lt 0 \\ 1 & k\geq0 \end{cases}[/math]

Állítás: Minden DI jel megadható egységimpulzusok szuperpozíciójaként.
Bizonyítás: Nem bizonyítjuk.

Példa 1

Az egységugrás felírható egységimpulzusok összegeként: [math]\epsilon[k]= \sum_{i=-\infty}^{k} \delta[i][/math] (szerk.: ezt ellenőrizd le!)

Példa 2

Vegyük a következő jelet:

[math]x[k]=\begin{cases} 0 & k\lt 0 \\ 2 \cdot 0.1^k &\text{egyébként}\end{cases}[/math].

Ezt fel tudjuk írni egy sorban így:

[math]x[k]= \sum_{i=0}^{\infty} 2 \cdot 0.1 ^ i * \delta[k-i][/math].

Itt ugye a [math]\delta[k-i][/math] csak a [math]k = i[/math] esetben lesz 1, minden más esetben 0. Ezt kicsit tovább csavarva:

[math]x[k]= \sum_{i=0}^{\infty} x[i] \cdot \delta[k-i][/math].

Mivel fentebb már kimondtuk, hogy ennek csak [math]k = i[/math] esetben van értelme. Így meg, az egyszerűsítések után egy triviális dolgot kapunk, miszerint:

[math]x[k]=x[k][/math]

DE!

Konvolúció

Tegyük fel, hogy a rendszerek válasza is szuperpozíciónálható. Továbbá tegyük fel, hogy egy rendszer egységimpulzusra adott válaszát h[k]-val jelöljük.
Megjegyzés: Ez így általánosságban nem igaz. Biztosan szükséges, hogy a rendszer lineáris, s időinvariáns legyen (lehet, még ez sem elég). Ezekről később lesz szó, ott érdemes végiggondolni, miért is van ezekre szükség - s hogy ennyi elég-e.

Na, és itt jön a magic, mert (az előző példa gondolatmenetét részben folytatva) ezek után ki merjük mondani, hogy a rendszer [math]y[k][/math]:

[math]y[k]= \sum_{i=0}^{\infty} x[i] \cdot h[k-i][/math]

Vegyük észre, hogy összesen az egységimpulzust cseréltük le fent a válaszára, majd ugyanúgy szuperponáljuk az egyes egységimpulzusokat.

Ennek pedig van gyakorlati haszna is. Ha szeretném kiszámolni, hogy egy terem hogyan lesz akusztikusan jó (mondjuk a színházban leghátul, visszhang nélkül hallatszik a színész hangja), akkor:

  • egységimpulzussal gerjesztem a termet (tapsolok),
  • lemérem leghátul a terem által adott impulzusválaszt,
  • számolok, hogy milyen választ adna a terem a színész hangjának a gerjesztésére.

Folytonos idejű jelek esetén

Speciális jelek
Egységugrás

[math]\epsilon(t)=\begin{cases} 0 & t\lt 0 \\ 1 & t\gt 0 \end{cases}[/math]

Megjegyzés: Az [math]\epsilon(0)[/math]-t nem definiáljuk, a tárgy keretében nem lesz rá szükség. Ha szeretnénk elképzelhetjük 0.5-nek, balról/jobbról 0/1-nek, etc.

Egységimpulzus

Írjuk fel az [math]\epsilon(t, T)[/math] függvényt a következőképpen:

[math]\epsilon(t, T)=\begin{cases} 0 & t\lt 0 \\ 1/T & t \in (0, T) \\ 0 & t \gt T \end{cases}[/math]

Ez 0-tól T-ig 1/T értékű négyzet. [math]\int_{-\infty}^{\infty} \epsilon(t, T) dt = 1[/math]

Az egységimpulzust nevezzük annak, ha az [math]\epsilon(t, T)[/math]-ben a T tart nullához.