„Számítógépes látórendszerek - Ellenőrző kérdések: Számítógépes látás alapok” változatai közötti eltérés

A VIK Wikiből
Ugrás a navigációhoz Ugrás a kereséshez
7. sor: 7. sor:
 
*Hierarchikus leírások
 
*Hierarchikus leírások
 
'''Videófolyam''': Tipikusan képek sorozata, mozgásleírás (pl. MPEG4 tömörítés) címesemények sorozata.
 
'''Videófolyam''': Tipikusan képek sorozata, mozgásleírás (pl. MPEG4 tömörítés) címesemények sorozata.
 +
=== Ismertesse a fényérzékelés fontosabb eszközeit. Részletezze a CCD és a CMOS érzékelők működését, típusait, előnyeit és hátrányait. ===
 +
'''Fényérzékelés eszközei:'''
 +
*Fotodióda
 +
**CCD
 +
**CMOS (Főként APS)
 +
*Fotoellenállás
 +
*Kvantumeszközök
 +
*Kémiai érzékelők
 +
*Hőmérsékletmérésen alapuló eszközök
 +
==== CCD ====
 +
1969-ben fejlesztették ki a Bell Labsnál, analóg léptetőregiszternek. Működésének lényege, hogy adott órajel hatására a bemeneti oldalon levő töltést mozgásra lehet bírni, azaz léptetni lehet a kimeneti oldal fele. Gyorsan kiderült, hogy nem csak elektronikusan lehet feltölteni a regisztereket, hanem a fény fotonjaival is. 1970-re képesek voltak képet létrehozni az új esz-közzel, s így megszületett a CCD.
 +
Többfajta CCD-vel találkozhatunk a mai gépekben. A fent leírt eszköz hivatalos neve a Full-Frame Transfer (FFT) CCD. Ilyen érzékelő szerepel pl. a Canon 1D-ben vagy az Olympus E1-ben is. Gyakran a sebesség növelése érdekében nem egy kiolvasási vonalat (kiolvasó regisztert) használnak, hanem többet, ennek neve a Frame Transfer CCD. Ezeknél az érzékelőknél nincs lehetőség elektronikus zár alkalmazására.
 +
A másik, elterjedtebb CCD típus az interline CCD. A fő különbség a kettő közt, hogy a Full-Frame Transfer CCD nem tud addig újabb képet készíteni, amíg a kiolvasás végre nem hajtó-dik, ami azért időbe telik. Ez egy tükörreflexes, élőkép nélküli gépnél még nem probléma, de mi van akkor, ha folyamatos képet szeretnénk látni, pl. kompakt fényképezőgépeknél vagy videokameráknál? Ilyenkor jön az interline CCD a képbe.
 +
'''Összefoglalva:'''
 +
*Fullframe-Transfer CCD pixelenként olvasás (külső zár szükséges)
 +
*Frame-transfer CCD fotoérzékelők egyszerre CCD-re
 +
*Interline CCD CCD a fotoaktív oszlopok között (rosszabb felbontás)
 +
'''Előnye'''
 +
*Nagy érzékenység
 +
*Kevés zaj
 +
*Interline felépítés esetén elektronikus zár megvalósítható (ezt ki is használták pl. a Ni-kon D70-nél is, ahol 1/500s-tól már nem a mechanikus, hanem az elektronikus zár működik).
 +
'''Hátránya'''
 +
*Bonyolult előállítás, emiatt drága
 +
*A kiolvasási elektronikának több kiolvasási csatorna esetén tökéletesen megegyezőnek kell lennie, egyébként sávosodás lép fel (banding)
 +
*Könnyen létre jöhet az ún. Blooming effektus: ha egy elektródán túl sok töltés halmo-zódik fel, egyszerűen átfolyik a mellette levő elektróda területére (ez ellen számos anti-blooming eljárás létezik, általában a CCD-k adatlapján szerepel ennek a hatékonysága)
 +
*Magas fogyasztás, emiatt nagyobb melegedés (és nagyobb termikus zaj)
 +
==== CMOS ====
 +
A CMOS-nál a megnevezés csak és kizárólag a gyártástechnológiát jelöli.
 +
Ahogy a leírásból is látszik, az első esetben aktív pixelekről beszélünk, azaz minden egyes képpont saját erősítővel rendelkezik (töltés-feszültség konverter, amely a CCD-nél a kiolvasó egységben volt megtalálható). A kiolvasás mátrix elven történik, minden képpontot külön-külön meg lehet címezni. Mivel minden egyes pixel külön címezhető, illetve a vezetékhálóza-ton keresztül bármilyen sorrendben összekapcsolható a chip további erősítőfokozataival, na-gyon könnyű a kép egy részletét vagy éppen egy alacsonyabb felbontású képet is kiolvasni.
 +
A CMOS érzékelőre nagyon könnyű integrálni egyéb áramköri elemeket. Általában a CMOS érzékelők tartalmazzák az analóg-digitális átalakítókat is (míg ez a CCD-nél külön áramkör volt), sőt egyes esetben elő-feldolgozást is végeznek (szenzor szintű zajszűrés például). A nagyobb integrálásnak köszönhetően alacsonyabb az előállítási költségük, mint CCD társaik-nak.
 +
'''Hátrányok:'''
 +
*Nagyobb zaj: a pixelek egyedi erősítőit nem lehet pontosan beállítani, ezért ezek extra zajt adnak a képhez (pix-pattern noise). Erre a problémára a Canon talált tökéletes megoldást hardver szinten (és lassan minden gyártó alkalmaz hasonló megoldásokat),
 +
*Interferencia érzékenység: a nagy számú aktív elem sokkal érzékenyebb a környezetből érkező elektromágneses zavarokra, mint a CCD,
 +
*Az aktív elemek csökkentik az érzékelő hatásos méretét (mint az Interline CCD-knél), de itt is segítséget nyújtanak a mikrolencsék,
 +
*Az elektronikus zár nem, vagy nehezen valósítható meg. Jól látható a CMOS érzéke-lőkkel készült videofelvételeken ennek a hatása: a kiolvasási sebesség miatt jól érzé-kelhetően elcsúszik a kép (nem azonos időpillanatban történik a teljes kép kiolvasása meg, mint a CCD-knél), és ha pl. egy mozgó autót fényképezünk, akkor az eredetileg kb. téglatest forma szétcsúszik paralelogrammává.
 +
'''Előnyök:'''
 +
*A nagy integrálhatóság miatt alacsony ár,
 +
*Kis fogyasztás, kisebb hőtermelés (alacsonyabb termikus zaj).
 +
Ismertesse a színlátás alapjait. Milyen módszereket használunk több módusú (színes) érzéke-lésre? Mit jelent a Színhőmérséklet?

A lap 2015. április 6., 18:54-kori változata

Számítógépes látás alapok

Ismertesse a kép fogalmát: mit nevezünk képnek, milyen képleírási lehetőségek állnak rendelkezésünkre? Mit jelent a videofolyam?

Kép: Vizuális információkat tartalmazó összefüggő adathalmaz.

  • Láncok (pl. RLE)
  • Topológiai leírások (gráfok)
  • Relációs struktúrák
  • Hierarchikus leírások

Videófolyam: Tipikusan képek sorozata, mozgásleírás (pl. MPEG4 tömörítés) címesemények sorozata.

Ismertesse a fényérzékelés fontosabb eszközeit. Részletezze a CCD és a CMOS érzékelők működését, típusait, előnyeit és hátrányait.

Fényérzékelés eszközei:

  • Fotodióda
    • CCD
    • CMOS (Főként APS)
  • Fotoellenállás
  • Kvantumeszközök
  • Kémiai érzékelők
  • Hőmérsékletmérésen alapuló eszközök

CCD

1969-ben fejlesztették ki a Bell Labsnál, analóg léptetőregiszternek. Működésének lényege, hogy adott órajel hatására a bemeneti oldalon levő töltést mozgásra lehet bírni, azaz léptetni lehet a kimeneti oldal fele. Gyorsan kiderült, hogy nem csak elektronikusan lehet feltölteni a regisztereket, hanem a fény fotonjaival is. 1970-re képesek voltak képet létrehozni az új esz-közzel, s így megszületett a CCD. Többfajta CCD-vel találkozhatunk a mai gépekben. A fent leírt eszköz hivatalos neve a Full-Frame Transfer (FFT) CCD. Ilyen érzékelő szerepel pl. a Canon 1D-ben vagy az Olympus E1-ben is. Gyakran a sebesség növelése érdekében nem egy kiolvasási vonalat (kiolvasó regisztert) használnak, hanem többet, ennek neve a Frame Transfer CCD. Ezeknél az érzékelőknél nincs lehetőség elektronikus zár alkalmazására. A másik, elterjedtebb CCD típus az interline CCD. A fő különbség a kettő közt, hogy a Full-Frame Transfer CCD nem tud addig újabb képet készíteni, amíg a kiolvasás végre nem hajtó-dik, ami azért időbe telik. Ez egy tükörreflexes, élőkép nélküli gépnél még nem probléma, de mi van akkor, ha folyamatos képet szeretnénk látni, pl. kompakt fényképezőgépeknél vagy videokameráknál? Ilyenkor jön az interline CCD a képbe. Összefoglalva:

  • Fullframe-Transfer CCD pixelenként olvasás (külső zár szükséges)
  • Frame-transfer CCD fotoérzékelők egyszerre CCD-re
  • Interline CCD CCD a fotoaktív oszlopok között (rosszabb felbontás)

Előnye

  • Nagy érzékenység
  • Kevés zaj
  • Interline felépítés esetén elektronikus zár megvalósítható (ezt ki is használták pl. a Ni-kon D70-nél is, ahol 1/500s-tól már nem a mechanikus, hanem az elektronikus zár működik).

Hátránya

  • Bonyolult előállítás, emiatt drága
  • A kiolvasási elektronikának több kiolvasási csatorna esetén tökéletesen megegyezőnek kell lennie, egyébként sávosodás lép fel (banding)
  • Könnyen létre jöhet az ún. Blooming effektus: ha egy elektródán túl sok töltés halmo-zódik fel, egyszerűen átfolyik a mellette levő elektróda területére (ez ellen számos anti-blooming eljárás létezik, általában a CCD-k adatlapján szerepel ennek a hatékonysága)
  • Magas fogyasztás, emiatt nagyobb melegedés (és nagyobb termikus zaj)

CMOS

A CMOS-nál a megnevezés csak és kizárólag a gyártástechnológiát jelöli. Ahogy a leírásból is látszik, az első esetben aktív pixelekről beszélünk, azaz minden egyes képpont saját erősítővel rendelkezik (töltés-feszültség konverter, amely a CCD-nél a kiolvasó egységben volt megtalálható). A kiolvasás mátrix elven történik, minden képpontot külön-külön meg lehet címezni. Mivel minden egyes pixel külön címezhető, illetve a vezetékhálóza-ton keresztül bármilyen sorrendben összekapcsolható a chip további erősítőfokozataival, na-gyon könnyű a kép egy részletét vagy éppen egy alacsonyabb felbontású képet is kiolvasni. A CMOS érzékelőre nagyon könnyű integrálni egyéb áramköri elemeket. Általában a CMOS érzékelők tartalmazzák az analóg-digitális átalakítókat is (míg ez a CCD-nél külön áramkör volt), sőt egyes esetben elő-feldolgozást is végeznek (szenzor szintű zajszűrés például). A nagyobb integrálásnak köszönhetően alacsonyabb az előállítási költségük, mint CCD társaik-nak. Hátrányok:

  • Nagyobb zaj: a pixelek egyedi erősítőit nem lehet pontosan beállítani, ezért ezek extra zajt adnak a képhez (pix-pattern noise). Erre a problémára a Canon talált tökéletes megoldást hardver szinten (és lassan minden gyártó alkalmaz hasonló megoldásokat),
  • Interferencia érzékenység: a nagy számú aktív elem sokkal érzékenyebb a környezetből érkező elektromágneses zavarokra, mint a CCD,
  • Az aktív elemek csökkentik az érzékelő hatásos méretét (mint az Interline CCD-knél), de itt is segítséget nyújtanak a mikrolencsék,
  • Az elektronikus zár nem, vagy nehezen valósítható meg. Jól látható a CMOS érzéke-lőkkel készült videofelvételeken ennek a hatása: a kiolvasási sebesség miatt jól érzé-kelhetően elcsúszik a kép (nem azonos időpillanatban történik a teljes kép kiolvasása meg, mint a CCD-knél), és ha pl. egy mozgó autót fényképezünk, akkor az eredetileg kb. téglatest forma szétcsúszik paralelogrammává.

Előnyök:

  • A nagy integrálhatóság miatt alacsony ár,
  • Kis fogyasztás, kisebb hőtermelés (alacsonyabb termikus zaj).

Ismertesse a színlátás alapjait. Milyen módszereket használunk több módusú (színes) érzéke-lésre? Mit jelent a Színhőmérséklet?