„Laboratórium 2 - 9. Mérés ellenőrző kérdései” változatai közötti eltérés
7. sor: | 7. sor: | ||
==1. Rajzolja fel a PLL tömbvázlatát.== | ==1. Rajzolja fel a PLL tömbvázlatát.== | ||
− | A PLL egy olyan szabályozási kör, amely a kimeneti jelét egy bemeneti jelhez (referencia jel) | + | A PLL egy olyan szabályozási kör, amely a kimeneti jelét egy bemeneti jelhez (referencia jel) képest képes szinkronizálni mind frekvenciában, mind fázisban. |
[[Fájl:Labor2 kép13.jpg|700px]] | [[Fájl:Labor2 kép13.jpg|700px]] |
A lap 2014. március 3., 23:51-kori változata
Tartalomjegyzék
- 1 1. Rajzolja fel a PLL tömbvázlatát.
- 2 2. Adja meg a PD kimeneti feszültségét (nemlinearizált alak).
- 3 3. Adja meg a VCO kimeneti fázisát a komplex frekvenciatartományban.
- 4 4. Rajzolja fel a hurokszűrő kapcsolási rajzát és adja meg az átviteli függvényét.
- 5 5. Adja meg a hurokszűrő átviteli függvényét és rajzolja fel a törtvonalas Bode-diagramját.
- 6 6. Rajzolja fel a PLL nemlineáris alapsávi modelljét.
- 7 7. Rajzolja fel a PD nemlineáris karakterisztikáját és azon határozza meg a munkapontot.
- 8 8. Adja meg a PLL bemenet és kimenete közti fáziskülönbség értékét. (aktív hurokszűrőre és fáziszárt állapotra értendő).
- 9 9. Adja meg a PD kimeneti feszültségét a lineáris alapsávi modellben kis [math] \Theta_e [/math] esetén (nem kell levezetni).
- 10 10. Rajzolja fel a PLL lineáris alpsávi modelljét.
- 11 11. Adja meg a hurokerősítés egyenletét (legegyszerűbb forma).
- 12 12. Adja meg a PLL zárthurkú átviteli függvényét (legegyszerűbb forma).
- 13 13. Adja meg a PLL hibafüggvényét (legegyszerűbb forma).
- 14 14. Adja meg a hurokerősítés egyenletét másodfokú hurokra (elsőfokú hurok, aktív hurokszűrővel).
- 15 15. Rajzolja fel a hurokerősítés törtvonalas Bode-diagramját ([math] \zeta = 1 [/math]).
- 16 16. Rajzolja fel a hurokerősítés törtvonalas Bode-diagramját ([math] \zeta \lt 0,707 [/math]).
- 17 17. Rajzolja fel a zárthurkú átviteli függvény Bode-diagramját különböző [math] \zeta [/math]-ra.
- 18 18. Rajzolja fel a hibafüggvény Bode-diagramját különböző [math] \zeta [/math]-k esetén.
- 19 19. Adja meg a PLL tervezési paramétereit és, hogy az egyes paraméterek mit szabnak meg.
- 20 20. Adja meg a PLL frekvenciatartományait.
- 21 21. Rajzolja fel az FM demodulátor tömbvázlatát.
- 22 22. Milyen tervezési feltételt kell az FM demodulátornak kielégítenie?
- 23 23. Rajzolja fel a PM demodulátor tömbvázlatát.
- 24 24. Milyen tervezési feltételt kell a PM demodulátornak kielégítenie?
- 25 25. Rajzolja fel az FSK modulált jel hullámformáját.
- 26 26. Rajzolja fel a rendszer válaszát az időtartományban a VCO perturbációjára, ha [math]\zeta\gt 1[/math], [math]\zeta=1[/math], [math]\zeta \lt 1[/math].
1. Rajzolja fel a PLL tömbvázlatát.
A PLL egy olyan szabályozási kör, amely a kimeneti jelét egy bemeneti jelhez (referencia jel) képest képes szinkronizálni mind frekvenciában, mind fázisban.
Részegységek:
- Phase Detector: A be- és kimeneti jel fázisát hasonlítja össze és a fáziskülönbséggel arányos feszültséget állít elő.
- Hurokszűrő: Kiszűri az [math]u_d(t)[/math] AC komponensét.
- VCO: A szűrő kimeneti jelétől lineárisan függő kimeneti frekvenciájú jelet állít elő.
2. Adja meg a PD kimeneti feszültségét (nemlinearizált alak).
[math] u_d(t)=0.5 \cdot K_d \cdot U_{1p} \cdot U_{2p} \cdot \sin(\Theta_e) [/math]
Paraméterek:
- [math]U_{1p}[/math] és [math]U_{2p}[/math] - A fázisdetektor bemeneteire juttatott jelek amplitúdói.
- [math]K_d[/math] - A fázisdetektorra jellemző konstans.
- [math]\Theta_e[/math] - A PD két bemeneti jel fáziskülönbsége.
3. Adja meg a VCO kimeneti fázisát a komplex frekvenciatartományban.
[math] \Theta_2(s) = \frac{K_v}{s} \cdot U_f(s) = \frac{K_v}{s} \cdot F(s) \cdot K_d \cdot \Theta_e(s) [/math]
Paraméterek:
- [math]K_v[/math] - A VCO átviteli tényezője.
- [math]U_f[/math] - A hurokszűrőből kimeneti jelének komplex amplitúdója.
- [math]K_d[/math] - A fázisdetektorra jellemző konstans.
- [math]F(s)[/math] - A hurokszűrő átviteli függvénye.
- [math]\Theta_e(s)[/math] - A fázisdetektor bemeneti jeleinek fáziskülönbségének a komplex amplitúdója.
4. Rajzolja fel a hurokszűrő kapcsolási rajzát és adja meg az átviteli függvényét.
[math] F(s) = \frac {1+sC(R_1+R_2)}{sR_1C} = \frac {1+s\tau_1}{s\tau_2} [/math]
5. Adja meg a hurokszűrő átviteli függvényét és rajzolja fel a törtvonalas Bode-diagramját.
[math] F(s) = \frac {1+sC(R_1+R_2)}{sR_1C} = \frac {1+s\tau_1}{s\tau_2} [/math]
6. Rajzolja fel a PLL nemlineáris alapsávi modelljét.
7. Rajzolja fel a PD nemlineáris karakterisztikáját és azon határozza meg a munkapontot.
Ha a fázishiba megnő, akkor ennek hatására megnő PD kimenetén a feszültség, majd a VCO pillanatnyi kimeneti frekvenciája, ami egyben a PD egyik bemeneti jele. Ennek a jelnek úgy kell hatnia, hogy a fázishiba csökkenjen, ellenkező esetben nem jön létre fáziszárt állapot. A fenti elv a alapján megvizsgálva a PD nemlineáris karakterisztikáját 0-ban és [math]\pi[/math]-ben megállapítható, hogy a munkapont 0-ban van, mivel csak erre a pontra teljesülnek az előírások.
8. Adja meg a PLL bemenet és kimenete közti fáziskülönbség értékét. (aktív hurokszűrőre és fáziszárt állapotra értendő).
Mivel az alkalmazott aktív hurokszűrő erősítése nagy (kb. 200 000, mert nincs DC visszacsatolás), ezért a bementén csak közel 0 V DC feszültség lehet. A hurokszűrő bemenete egyben a PD kimenete, és a PD kimenetén csak akkor lehet nulla fázishiba melett nulla feszültség, ha a két bemeneti jel között a fáziskülönbség [math]\pi/2[/math], vagyis az egyik bemeneti jel szinusz, másik koszinusz.
9. Adja meg a PD kimeneti feszültségét a lineáris alapsávi modellben kis [math] \Theta_e [/math] esetén (nem kell levezetni).
[math] u_d(t)= K_d \cdot \Delta \Theta_e \approx K_d \Theta_e [/math]
[math]K_d \approx 0.5 \cdot U_{1p} \cdot U_{2p}[/math]
10. Rajzolja fel a PLL lineáris alpsávi modelljét.
11. Adja meg a hurokerősítés egyenletét (legegyszerűbb forma).
[math] G(s) = K_d \cdot F(s) \cdot {K_v \over s }[/math]
Paraméterek:
- [math]F(s)[/math] - A hurokszűrő átviteli függvénye.
- [math]K_d[/math] - A fázisdetektor átviteli tényezője.
- [math]K_v[/math] - A VCO átviteli tényezője.
12. Adja meg a PLL zárthurkú átviteli függvényét (legegyszerűbb forma).
[math] H(s)= \frac{\Theta_2(s)}{\Theta_1(s)} = \frac {G(s)}{1+G(s)} [/math]
13. Adja meg a PLL hibafüggvényét (legegyszerűbb forma).
[math] 1-H(s)= \frac{\Theta_e(s)}{\Theta_1(s)} = \frac{\Theta_1(s)-\Theta_2(s)}{\Theta_1(s)}[/math]
14. Adja meg a hurokerősítés egyenletét másodfokú hurokra (elsőfokú hurok, aktív hurokszűrővel).
[math] G(s)=K_d \cdot \frac {1+s\tau_1}{s\tau_2} \cdot \frac {K_v}{s} [/math]
Paraméterek:
- [math]\tau_1, \tau_2[/math] - Az aktív szűrő időállandói.
- [math]K_d[/math] - A fázisdetektor átviteli tényezője.
- [math]K_v[/math] - A VCO átviteli tényezője.
15. Rajzolja fel a hurokerősítés törtvonalas Bode-diagramját ([math] \zeta = 1 [/math]).
- [math]\omega_B = 2 \cdot \zeta \cdot \omega_n[/math] - Zárthurkú sávszélesség.
- [math]\zeta[/math] - Csillapítási tényező.
- [math]\omega_n[/math] - Pólusfrekvencia.
16. Rajzolja fel a hurokerősítés törtvonalas Bode-diagramját ([math] \zeta \lt 0,707 [/math]).
17. Rajzolja fel a zárthurkú átviteli függvény Bode-diagramját különböző [math] \zeta [/math]-ra.
18. Rajzolja fel a hibafüggvény Bode-diagramját különböző [math] \zeta [/math]-k esetén.
19. Adja meg a PLL tervezési paramétereit és, hogy az egyes paraméterek mit szabnak meg.
Paraméterek:
- [math] \tau_1 [/math] - A sávszélességet [math](\omega_n)[/math] -t szabja meg,
- [math] \tau_2 [/math] - A stabilitási tulajdonságokat [math](\zeta )[/math] -t, illetve a dinamikát szabja meg.
- [math] G_0 [/math] - A követési tulajdonságokat [math]( \Theta_e )[/math] -t szabja meg. Az alkalmazott aktív szűrőre: [math]G_0 = \infty[/math]
20. Adja meg a PLL frekvenciatartományait.
A PLL frekvenciatartományai:
- [math]2 \Delta \omega_H[/math] Követési tartomány (HOLD-IN): Az a frekvenciatartomány, amelyen belül a PLL követni képes a bemeneti jel fázisát, miközben a bemeneti frekvencia az [math]\omega_0[/math] frekvenciától távolodik. Ezt a követési tartományt a hurokelemek telítésbe jutása korlátozza.
- [math]2 \Delta \omega_P[/math] Befogási tartomány (PULL-IN): Az a frekvencia tartomány, amelyen belülre kerülve a PLL képes elérni a fáziszárt állapotot.
21. Rajzolja fel az FM demodulátor tömbvázlatát.
22. Milyen tervezési feltételt kell az FM demodulátornak kielégítenie?
[math]\omega_n[/math] pólusfrekvencia [math]\geq [/math] maximális modulációs frekvencia.
23. Rajzolja fel a PM demodulátor tömbvázlatát.
24. Milyen tervezési feltételt kell a PM demodulátornak kielégítenie?
[math]\omega_n[/math] pólusfrekvencia [math] \leq [/math] minimális modulációs frekvencia.