Fizika 2 - Vizsga, 2013.01.02.

A VIK Wikiből
A lap korábbi változatát látod, amilyen Palotasb (vitalap | szerkesztései) 2013. január 5., 16:22-kor történt szerkesztése után volt.
Ugrás a navigációhoz Ugrás a kereséshez
← Vissza az előző oldalra – Fizika 2

A vizsgafeladatok. (Katt ide!)

A másik csoportnak ugyanezek a feladatok voltak, a sorrend volt csak más.

Számítási feladatok

1. feladat (a feltöltött feladatlapon 4. sorszámmal)

[math]0.5 m = 2 r \pi \Rightarrow r \approx 0.0796 m[/math]

[math]A = r^2 \pi \approx 0.01989 m^2[/math]

Fluxus a kör felületén: [math]\Phi = \int{B}dA \Rightarrow \Phi = B A \cos (\omega t + \phi)[/math] (skalárszorzat miatt)

Indukált feszütség: [math]U = \frac{d\Phi}{dt} = - B A \sin (\omega t + \phi) \omega[/math]

Ez akkor maximális ha [math]sin = -1[/math], tehát

[math]3.14 mV = B A \omega \Rightarrow \omega = \frac{3.14 \cdot 10^{-3}}{B A} = 62.8 = 2 \pi f \Rightarrow f = \frac{62.8}{2 \pi} s^{-1} \approx 10 s^{-1}[/math]

Tehát d)

2. feladat (a feladatlapon 9. sorszámmal)

A Gauss-törvényből következik, hogy az E tér csak a bezárt töltéstől függ. Mivel 1cm < 1.25cm < 1.5cm, külső henger töltése/tere lényegtelen. A térerősség sugárirányú a rendszer szimmetriája miatt, kifelé mutat mert pozitív töltés. A felhasznált Gauss-felület a hengerpalást, a záró lapok a végtelen hossz (a) miatt elhanyagolhatók.

[math]\oint{E(r)}dA = \frac{q_b}{\varepsilon_0}[/math]

A felületi töltéssűrűséggel és a palást területével kiszámítható a bezárt töltés, másrészt E az adott köríven konstans, merőleges dA-ra, ezért szorzat az integrál.

[math]E(r) 2 r \pi a = \frac{2 R \pi a \sigma}{\varepsilon_0} \Rightarrow E(r) = \frac{R \sigma}{r \varepsilon_0}[/math], ha [math]R=R_1 \lt r \lt R_2[/math]

[math]E(1.25cm) = \frac{1cm \cdot \sigma}{1.25cm \cdot 8.85 \cdot 10^{-12}} \approx 90.3955 \frac{V}{m}[/math]

Tehát b)

4. feladat (a feladatlapon 2. sorszámmal)

Esszékérdések

//TODO: ezt valaki nézze ki Hudson-Nelsonból