„Bode-diagram kézi rajzolása” változatai közötti eltérés

A VIK Wikiből
Ugrás a navigációhoz Ugrás a kereséshez
11. sor: 11. sor:
  
 
<math>
 
<math>
L(s) = {K \over s^i} \cdot {\sum_{k} \left( {1 + sT_k} \right) \cdot \sum_{m} \left( 1 + s \cdot 2 \xi_m T_m + s^2 T_m^2 \right) \over
+
L(s) = {K \over s^i} \cdot {\prod_{k} \left( {1 + sT_k} \right) \cdot \prod_{m} \left( 1 + s \cdot 2 \xi_m T_m + s^2 T_m^2 \right) \over
\sum_{l} \left( {1 + sT_l} \right) \cdot \sum_{n} \left( 1 + s \cdot 2 \xi_n T_n + s^2 T_n^2 \right)}
+
\prod_{l} \left( {1 + sT_l} \right) \cdot \prod_{n} \left( 1 + s \cdot 2 \xi_n T_n + s^2 T_n^2 \right)}
 
</math>
 
</math>
  

A lap 2015. július 18., 10:53-kori változata

A Bode-diagram kézi rajzolása több tantárgyból is előjöhet. Ehhez nyújt segítséget az alábbi leírás, melyet Ndroo készített a Keviczky-féle Szabályozástechnika-könyv alapján.

A Bode-diagram készítésének lépései

1. Átviteli függvény átalakítása

Az aszimptotikus Bode-diagramm rajzolásához először "Bode normál alakra" kell hoznunk az átviteli függvényt:


[math] L(s) = {K \over s^i} \cdot {\prod_{k} \left( {1 + sT_k} \right) \cdot \prod_{m} \left( 1 + s \cdot 2 \xi_m T_m + s^2 T_m^2 \right) \over \prod_{l} \left( {1 + sT_l} \right) \cdot \prod_{n} \left( 1 + s \cdot 2 \xi_n T_n + s^2 T_n^2 \right)} [/math]


Ebből az alakból leolvasható a rendszer [math]K[/math] körerősítése és [math]i[/math] típusszáma (integrátorok száma).


Ha tehát a feladatban ehhez hasonló alak van: [math]L(s)=\frac{10 \cdot (s+10)}{s^3+51s^2+50s}[/math], akkor át kell alakítani ilyen alakká: [math]L(s)={2\over s}\cdot \frac{(1+0.1s)}{(1+s)(1+0.02s)}[/math]


Először a számlálót és a nevezőt is szorzattá kell alakítani, aztán annyit emelünk ki, hogy az "s" nélküli tagok értéke 1 legyen:

[math]L(s)=\frac{10 \cdot (s+10)}{s^3+51s^s+50s}=10\frac{s+10}{s(s+1)(s+50)}=10\frac{10}{50}\frac{1+0.1s}{s(1+s)(1+0.02s)}={2 \over s} \cdot \frac{(1+0.1s)}{(1+s)(1+0.02s)}[/math].


Így minden tényező [math]1+sT[/math] alakú lesz. Ha eleve így adták meg, akkor ezt a lépést ki kell hagyni.

Megjegyzés: Ha komplex konjugált gyökpárok is kijöttek volna a gyöktényezős felbontás során, akkor azok [math] 1 + s \cdot 2 \xi T + s^2 T^2[/math] alakú tagokat hoztak volna be.

2. Pólusok/zérusok felírása

Zérusok - Azok a helyek ahol a számláló értéke 0 lesz: [math]z_1=-10[/math]

Pólusok - Azok a helyek, ahol a nevező értéke lesz 0: [math]p_1=0, \;p_2=-1, \;p_3=-50[/math]

3. Fel/letörések meghatározása

Ezek után készítsük el az alábbi táblázatot, melynek első sorában a pólusok és a zérusok abszolút értékük szerinti növekvő sorrendbe vannak rendezve (ezek lesznek a töréspontok):

Pólusok/zérusok
abszolút értéke
[math]|p_1|=0[/math] [math]|p_2|=1[/math] [math]|z_1|=10[/math] [math]|p_3|=50[/math]
Index +1 +1 -1 +1
Multiplicitás 1 1 1 1

Az index értéke zérus esetén -1, pólus esetén +1.

A multiplicitás pedig azt jelenti, hogy „hányszoros gyök”. Azaz például ha a -1 háromszoros gyöke lenne a nevezőnek, akkor a multiplicitása 3 lenne. Továbbá a komplex konjugált pólus/zérus-párok esetén mindkét gyök abszolút értéke ugyanaz, így azok alapból 2-szeres multiplicitásúnak számítanak.


A jelleggörbe meredeksége a következő képlet szerint alakul:


[math]\left( -20 {dB \over dek} \right) \cdot (multiplicitas) \cdot (index) [/math]


Ez a meredekség érték mindig az előző meredekséghez hozzáadódik!

4. A görbe kezdő meredeksége

Ha a rendszer tartalmaz integrátort (i>0), akkor a fenti képlet a kezdő meredekséget is tökéletesen megadja. Azaz 1 integrátornál a kezdő meredekség -20 dB/dek, 2 integrátornál -40 dB/dek...

Ha azonban nincs integrátor a rendszerben (i=0), akkor az amplitúdó görbe kezdő meredeksége zérus, azaz egy vízszintes szakasszal indul.

A fenti példában egyszeres integrátor van, azaz -20dB/dekád a kezdő meredekség.

(Ha esetleg olyan állna elő, hogy i<0, azaz a nincs 0 értékű pólus, de van legalább egy 0 értékű zérus, akkor a kezdő meredekség szintén a képlet szerint alakul. Azaz +20 dB/dek, +40 dB/dek.... )

5. Az omega tengely metszésének pontja

Most már tudjuk, hogyan néz ki az aszimptotikus amplitúdó görbe menete, de még szükségünk van az [math]\omega[/math] tengely metszéspontjára, azaz [math]\omega_c[/math] vágási körfrekvencia értékére.

Ez legtöbb esetben a kezdeti meredekség és a körerősítés alapján meghatározható. Ha nincs integrátor a rendszerben (i=0), akkor a kezdeti szakasz vízszintes, így ez a módszer sajnos nem használható. Ha azonban i>0, akkor tudjuk, hogy az integrátor egyenese (van annak meghosszabbítása) [math]\sqrt[i]{K}[/math] körfrekvencián metszi az [math]\omega[/math] tengelyt. Ha ez előtt a pont előtt nincs töréspont, akkor a tényleges amplitúdógörbe is itt fogja metszeni az [math]\omega[/math] tengelyt.


Jelen esetünkben azonban 1 integrátor van, tehát az integrátor egyenese (vagy annak meghosszabbítása) K=2-nél metszi a [math]\omega[/math] tengelyt. Mivel azonban [math]\omega=1[/math]-nél az integrátor egyenesének kezdeti -20 dB/dek meredekségéhez -20 dB/dek hozzáadódik a képletnek megfelelően, tehát még [math]\omega=2[/math] előtt -40 dB/dek lesz a meredeksége, így a tényleges amplitúdó görbe nem 2-nél, hanem egy annál kisebb értéknél metszi az [math]\omega[/math] tengelyt!

Az integrátor egyenese [math]\omega=1[/math] körfrekvencián [math]log\left( { 2\over 1 } \right) dek \cdot 20 {db \over dek} = 6 dB[/math] értéket vesz fel, hiszen [math]log\left( { 2\over 1 } \right)[/math] dekád távolság van az 1 és 2 körfrekvencia értékek között, és [math]-20 {db \over dek}[/math] az integrátor egyenesének meredeksége. Tudjuk, hogy a tényleges amplitúdó görbe [math]\omega=1[/math] körfrekvenciától [math]-40 {db \over dek}[/math] meredekséggel halad, tehát kiszámíthatjuk, hogy az amplitúdó görbe [math]1 + {6 dB \over 40 {dB \over dek}} = 1+0.15 dek = 1 \cdot 10^{0.15}=1.412 \approx \sqrt{2}[/math]-nél metszi az [math]\omega[/math] tengelyt.


Előfordul még olyan eset is, amikor az amplitúdó görbe duplán törik az integrátor egyenesének tengelymetszete előtt, méghozzá úgy hogy például -20 dB/dek-ről vízszintes szakaszba megy át, majd újra -20 dB/dek-re törik le. Ilyenkor a vágási körfrekvencia annyi dekáddal nagyobb az integrátor egyenesének tengelymetszeti pontjánál, ahány dekád széles az amplitúdó görbe vízszintes szakasza.


Általánosan elmondható, hogy érdemes először lerajzolni a görbe menetét és logikázni az ismert pontok alapján. Geometriai úton legtöbb esetben kihozható egy ismert tengelymetszetből a vágási körfrekvencia, azonban figyelni kell hogy az Y tengely dB skálában van, míg az X tengely pedig dekád skálában.

Felhasználható azonosság még, hogy az integrátor egyenese (vagy annak meghosszabbítása) [math]\omega=1[/math] körfrekvencián [math]20 \cdot log(K)[/math] értéket vesz fel dB-ben.

6. Amplitúdó-körfrekvencia görbe felrajzolása

Itt az eddigieket kell összegyúrni eggyé. Először felrajzolod az görbe vonalát a megfelelő meredekségekkel (ezeket rá is kell írni) és törésekkel. Ezután behúzod az [math]\omega[/math] tengelyt úgy, hogy már tudjuk a kiszámolt értékből, hogy az amplitúdó görbe melyik szakaszára (melyik két töréspont közé) esik a vágási körfrekvencia - Jelen esetben ez az 1 és az 10 közötti szakasz. Ezután jelölöd az [math]\omega[/math] tengelyen a töréspontok értékeit és a vágási körfrekvencia értékét. Végül behúzod [math]|L(j\omega)|[/math] tengelyt.

Hiba a bélyegkép létrehozásakor: Nem lehet a bélyegképet a célhelyre menteni

7. Fázis-körfrekvencia görbe

Ezt a legegyszerűbb úgy megszerkeszteni, hogy az Y tengelyt felosztjuk 90°-onként. A fenti fel/letöréseknek megfelelően megy át a fázisgörbe egyik sávról a másikra. Ha feltörik, akkor az érték 90°-al nő, ha letörik, akkor 90°-al csökken. Értelemszerűen, ha többszörös multiplicitású pólus/zérus okozza a törést, akkor annyiszor 90°-al változik a fázisgörbe menete, ahányszoros multiplicitású a törést kiváltó pólus/zérus.

Ez viszont nem egyik pillanatról a másikba megy végbe, hanem "átmenetszerűen", rajzban ez azt jelenti, hogy a törésponti körfrekvencián már PONTOSAN félúton van az új állapot felé.

Hiba a bélyegkép létrehozásakor: Nem lehet a bélyegképet a célhelyre menteni

8. Fázisgörbe kezdőértéke

Ez a rendszer típusszámán (i) és a körerősítésén (K) múlik:

  1. Ha a K körerősítés pozitív, akkor a kezdőérték 0°, ha negatív, akkor -180°
  2. A fent kikalkulált kezdőértéket az integrátorok (-i*90°)-al változtatják meg:
    • Ha nincs integrátor (i=0), akkor pozitív K esetén 0°, negatív K esetén -180°
    • Ha egy integrátor van (i=1), akkor pozitív K esetén -90°, negatív K esetén -270°
    • Ha két integrátor van (i=2), akkor pozitív K esetén -180°, negatív K esetén -360° = 0°
    • Ha a nevezőben nincs integrátor, de van 0 értékű zérus (i= -1), akkor pozitív K esetén +90°, negatív K esetén -90°

9. Fázistartalék(többlet) meghatározása

A fázistartalék [math]\varphi_t[/math] értéke megadja, hogy a fázisgörbe a vágási körfrekvencián mennyivel van -180° felett. Azaz ahol az amplitúdó görbe metszi az [math]\omega[/math] tengelyt, ott megnézed a [math]\varphi (\omega)[/math] görbe értéke mennyivel van -180° felett.

Ennek a közelítő leolvasásához célszerű egy jó aszimptotikus amplitúdó görbét rajzolni és alá egy fázisgörbét, bár erről csak az látszik általában hogy a fázistartalék pozitív, avagy negatív. Jelen esetben sajnos még ezt is nehézkes eldönteni...

Szerencsére a fázisgörbe függvénye egzaktul megadható az átviteli függvényből, az alábbi általános képlet alapján - ha K negatív, akkor még 180°-ot le kell vonni belőle:

[math]\varphi(\omega) = -i \cdot 90^{\circ} + \sum_{k} arctg \left( {1\over |z_k|} \cdot \omega \right) - \sum_{l} arctg \left( {1\over |p_l|} \cdot \omega \right)[/math]


A mi esetünkben:

[math]\varphi(\omega) = -1 \cdot 90^{\circ} + arctg \left( {1\over |-10|} \cdot \omega \right) - arctg \left( {1\over |-1|} \cdot \omega \right) - arctg \left( {1\over |-50|} \cdot \omega \right)=[/math]


[math] =-90^{\circ} +arctg \left( 0.1 \cdot \omega \right) - arctg \left( \omega \right) - arctg \left( 0.02 \cdot \omega \right) [/math]


Tehát a fázistartalék:

[math] \varphi_t=\varphi(\omega_c)+180^{\circ}=180^{\circ}-90^{\circ} +arctg \left( 0.1 \cdot \omega_c \right) - arctg \left( \omega_c \right) - arctg \left( 0.02 \cdot \omega_c \right) \approx [/math]

[math] \approx 90^{\circ} +arctg \left( 0.1 \cdot \sqrt{2} \right) - arctg \left( \sqrt{2} \right) - arctg \left( 0.02 \cdot \sqrt{2} \right) = [/math]

[math] = 90^{\circ} +arctg \left( 0.1414 \right) - arctg \left( 1.414 \right) - arctg \left( 0.02828 \right) [/math]


Felhasználva az alábbi közelítéseket:

[math]arctg(1)=45^{\circ}, arctg(0.1) \approx 5^{\circ}, arctg(10) \approx 85^{\circ}[/math]


[math]\varphi_t \approx 90^{\circ} + 5^{\circ} - 55^{\circ} - 0^{\circ} = 40^{\circ} [/math]

10. Fázis-körfrekvencia görbe felrajzolása

Az itt lévő rajz kicsit csalóka, de a görbe menete jól látszik. A fázistartalék viszont +40°!

Hiba a bélyegkép létrehozásakor: Nem lehet a bélyegképet a célhelyre menteni

11. A rendszer stabilitásvizsgálata

Stabilis-e a rendszer: Vagy azt nézed, hogy a fázistöbblet pozitív-e, vagy azt, hogy a jobboldali számsíkon van-e pólus - Ha nincs, akkor stabilis.

12. Statikus hiba

Megnézed az integrátorok számát, az adja a típusszámot, és azt a sort írod le a táblázatból (Lásd: könyv 140. oldal).

Típusszám 0 1 2
Egységugrás [math]\frac{1}{1+K}[/math] 0 0
Sebességugrás [math]\infty[/math] [math]\frac{1}{K}[/math] 0
Gyorsulásugrás [math]\infty[/math] [math]\infty[/math] [math]\frac{1}{K}[/math]
  • 0 jelentése: hiba nélkül követi
  • [math]\infty[/math] jelentése: nem tudja követni