Analízis (MSc) típusfeladatok

A VIK Wikiből
A lap korábbi változatát látod, amilyen Csala Tamás (vitalap | szerkesztései) 2016. május 24., 21:36-kor történt szerkesztése után volt.
Ugrás a navigációhoz Ugrás a kereséshez

Integrál trafók témakör

Elmélet

1) Milyen függvényosztályra értelmeztük a Laplace transzformációt?

2) Írjuk fel a skálázó egyenletet!

Laplace-trafó diff-egyenlet rendszer

1) Laplace transzformáció segítségével számítsuk ki x(t)-t, ha [math]\dot{x}(t) = 2y(t) - x(t) + 1[/math]

[math]\dot{y}(t) = 3y(t) - 2x(t)[/math]

[math]x(0) = 0,~y(0) = 1[/math]

2) Laplace transzformáció segítségével számítsuk ki x(t)-t, ha [math]\ddot{x}(t) = 2x(t) - 3y(t)[/math]

[math]\ddot{y}(t) = x(t) - 2y(t)[/math]

[math]x(0) = \dot{x}(0) = 0,~y(0) = 0,~\dot{y}(0) = 1[/math]

Fourier diff-egyenlet

1) Oldjuk meg Fourier transzformáció segítségével! [math]y'(x) - 4y(x) = 8[/math]

Fourier trafó szabályok alkalmazása

1) Számítsuk ki az [math]f(x) = 3xe^{-x}H(x)[/math] Fourier transzformáltját, ha tudjuk, hogy [math]F(e^{-x}H(x)) = \frac{1}{\sqrt{2\pi}}\frac{1}{1+iy}[/math]

Disztribúciók

1) Adjuk meg [math]\delta[/math] és [math]\delta'[/math] lineáris kombinációjaként az [math]e^{3x-2}\delta'(x)[/math] disztribúciót! ====

Wavelet trafók

1) Legyen [math]\psi(x) = (1 - x^2)e^{-\frac{x^2}{2}}[/math], a mexikói kalap wavelet.

a) Legyen [math]f(x) = e^{-|x|}[/math]. [math]F(W_{\psi}f_a(b)) = ?[/math]

b) Legyen [math]g(x) = x^2[/math]. Tudjuk, hogy [math]\int_{R}e^{-\frac{x^2}{2}}dx=\sqrt{2\pi}[/math]. [math]W_{\psi}g_a(b) = ?[/math]

Numerikus módszerek témakör

Parcdiff egyenletek (Fourier)

1) Oldjuk meg Fourier módszerrel!

[math]\frac{\partial^2 u}{\partial t^2} = 4\frac{\partial^2 u}{\partial x^2}[/math]

[math]u(0, t) = u(3, t) = 0,~u(x,0)=sin\frac{4\pi}{3}x,~\frac{\partial u}{\partial t}(x, 0) = 2\sin\frac{\pi}{3}x[/math]

Parcdiff egyenletek (véges differenciák)

1) Véges differenciák segítségével, h=\frac{1}{2} felosztás mellett adjuk meg az u_{1,2} értékét, ha

[math]\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}[/math]

[math]u(0, t) = 3,~ u(3, t) = 0,~u(x,0)=3-x,~\frac{\partial u}{\partial t}(x, 0) = 0[/math]