„Analízis (MSc) típusfeladatok” változatai közötti eltérés

A VIK Wikiből
Ugrás a navigációhoz Ugrás a kereséshez
7. sor: 7. sor:
 
2) Írjuk fel a skálázó egyenletet!
 
2) Írjuk fel a skálázó egyenletet!
  
== Laplace-trafó diff-egyenlet rendszer ==
+
== Laplace trafó diff-egyenlet ==
  
 
1) Laplace transzformáció segítségével számítsuk ki x(t)-t, ha
 
1) Laplace transzformáció segítségével számítsuk ki x(t)-t, ha
22. sor: 22. sor:
  
 
<math>x(0) = \dot{x}(0) = 0,~y(0) = 0,~\dot{y}(0) = 1</math>
 
<math>x(0) = \dot{x}(0) = 0,~y(0) = 0,~\dot{y}(0) = 1</math>
 +
 +
3) Transzformáljuk elsőrendűvé a <math>y'' + xy' = x</math> differenciálegyenlet Laplace transzformációval (Nem kell megoldani!)!
  
 
== Fourier diff-egyenlet ==
 
== Fourier diff-egyenlet ==
27. sor: 29. sor:
 
1) Oldjuk meg Fourier transzformáció segítségével!
 
1) Oldjuk meg Fourier transzformáció segítségével!
 
<math>y'(x) - 4y(x) = 8</math>
 
<math>y'(x) - 4y(x) = 8</math>
 +
 +
2) Transzformáljuk elsőrendűvé a <math>y'' + xy' = x</math> differenciálegyenlet Fourier transzformációval (Nem kell megoldani!)!
  
 
== Fourier trafó szabályok alkalmazása ==
 
== Fourier trafó szabályok alkalmazása ==
35. sor: 39. sor:
  
 
1) Adjuk meg <math>\delta</math> és <math>\delta'</math> lineáris kombinációjaként az <math>e^{3x-2}\delta'(x)</math> disztribúciót!
 
1) Adjuk meg <math>\delta</math> és <math>\delta'</math> lineáris kombinációjaként az <math>e^{3x-2}\delta'(x)</math> disztribúciót!
 +
 +
2) Számítsuk ki a <math>T = e^{-x^2}</math> reguláris disztribúcuó és a <math>\delta'</math> disztribúció konvolúciójának hatását a <math>\psi(x) = x^2</math> függvényre: <math>(T * \delta')x^2 = ?</math>
 +
 +
3) Mi az <math>(x-3)f = 0</math> disztribúció értelemben vett egyenelet összes megoldása? (+1 miért?)
 +
 +
4) Adjuk meg az <math>e^{3x}\delta''(x-2)</math> disztribúciót a <math>\delta</math> eltolt deriváltjainak lineáris kombinációjaként!
  
 
== Wavelet trafók ==
 
== Wavelet trafók ==
43. sor: 53. sor:
  
 
b) Legyen  <math>g(x) = x^2</math>. Tudjuk, hogy <math>\int_{R}e^{-\frac{x^2}{2}}dx=\sqrt{2\pi}</math>. <math>W_{\psi}g_a(b) = ?</math>
 
b) Legyen  <math>g(x) = x^2</math>. Tudjuk, hogy <math>\int_{R}e^{-\frac{x^2}{2}}dx=\sqrt{2\pi}</math>. <math>W_{\psi}g_a(b) = ?</math>
 +
 +
2) A Poisson wavelet a következő:
 +
<math>\psi_n(x) = H(x) \frac{x-n}{n!} x^{n-1} e^{-x}</math>
 +
 +
a) Mutassuk meg, hogy <math>\psi(x) = -(\frac{x^n}{n!} e^{-x})'</math>, ha <math>x \geq 0</math>
 +
 +
b) Mutassuk meg, hogy <math>\int_R \psi_n(x)dx = 0</math>
 +
 +
c) <math>C_{\psi_n} = ?</math>
  
 
= Numerikus módszerek témakör =
 
= Numerikus módszerek témakör =

A lap 2016. május 24., 22:09-kori változata

Integrál trafók témakör

Elmélet

1) Milyen függvényosztályra értelmeztük a Laplace transzformációt?

2) Írjuk fel a skálázó egyenletet!

Laplace trafó diff-egyenlet

1) Laplace transzformáció segítségével számítsuk ki x(t)-t, ha [math]\dot{x}(t) = 2y(t) - x(t) + 1[/math]

[math]\dot{y}(t) = 3y(t) - 2x(t)[/math]

[math]x(0) = 0,~y(0) = 1[/math]

2) Laplace transzformáció segítségével számítsuk ki x(t)-t, ha [math]\ddot{x}(t) = 2x(t) - 3y(t)[/math]

[math]\ddot{y}(t) = x(t) - 2y(t)[/math]

[math]x(0) = \dot{x}(0) = 0,~y(0) = 0,~\dot{y}(0) = 1[/math]

3) Transzformáljuk elsőrendűvé a [math]y'' + xy' = x[/math] differenciálegyenlet Laplace transzformációval (Nem kell megoldani!)!

Fourier diff-egyenlet

1) Oldjuk meg Fourier transzformáció segítségével! [math]y'(x) - 4y(x) = 8[/math]

2) Transzformáljuk elsőrendűvé a [math]y'' + xy' = x[/math] differenciálegyenlet Fourier transzformációval (Nem kell megoldani!)!

Fourier trafó szabályok alkalmazása

1) Számítsuk ki az [math]f(x) = 3xe^{-x}H(x)[/math] Fourier transzformáltját, ha tudjuk, hogy [math]F(e^{-x}H(x)) = \frac{1}{\sqrt{2\pi}}\frac{1}{1+iy}[/math]

Disztribúciók

1) Adjuk meg [math]\delta[/math] és [math]\delta'[/math] lineáris kombinációjaként az [math]e^{3x-2}\delta'(x)[/math] disztribúciót!

2) Számítsuk ki a [math]T = e^{-x^2}[/math] reguláris disztribúcuó és a [math]\delta'[/math] disztribúció konvolúciójának hatását a [math]\psi(x) = x^2[/math] függvényre: [math](T * \delta')x^2 = ?[/math]

3) Mi az [math](x-3)f = 0[/math] disztribúció értelemben vett egyenelet összes megoldása? (+1 miért?)

4) Adjuk meg az [math]e^{3x}\delta''(x-2)[/math] disztribúciót a [math]\delta[/math] eltolt deriváltjainak lineáris kombinációjaként!

Wavelet trafók

1) Legyen [math]\psi(x) = (1 - x^2)e^{-\frac{x^2}{2}}[/math], a mexikói kalap wavelet.

a) Legyen [math]f(x) = e^{-|x|}[/math]. [math]F(W_{\psi}f_a(b)) = ?[/math]

b) Legyen [math]g(x) = x^2[/math]. Tudjuk, hogy [math]\int_{R}e^{-\frac{x^2}{2}}dx=\sqrt{2\pi}[/math]. [math]W_{\psi}g_a(b) = ?[/math]

2) A Poisson wavelet a következő: [math]\psi_n(x) = H(x) \frac{x-n}{n!} x^{n-1} e^{-x}[/math]

a) Mutassuk meg, hogy [math]\psi(x) = -(\frac{x^n}{n!} e^{-x})'[/math], ha [math]x \geq 0[/math]

b) Mutassuk meg, hogy [math]\int_R \psi_n(x)dx = 0[/math]

c) [math]C_{\psi_n} = ?[/math]

Numerikus módszerek témakör

Parcdiff egyenletek (Fourier)

1) Oldjuk meg Fourier módszerrel!

[math]\frac{\partial^2 u}{\partial t^2} = 4\frac{\partial^2 u}{\partial x^2}[/math]

[math]u(0, t) = u(3, t) = 0,~u(x,0)=sin\frac{4\pi}{3}x,~\frac{\partial u}{\partial t}(x, 0) = 2\sin\frac{\pi}{3}x[/math]

Parcdiff egyenletek (véges differenciák)

1) Véges differenciák segítségével, [math]h=\frac{1}{2}[/math] felosztás mellett adjuk meg az [math]u_{1,2}[/math] értékét, ha

[math]\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}[/math]

[math]u(0, t) = 3,~ u(3, t) = 0,~u(x,0)=3-x,~\frac{\partial u}{\partial t}(x, 0) = 0[/math]

Nem lineáris egyenletek numerikus megoldása

1) Keressük a [math]\sqrt{1 + coshx} - 2 = x[/math] egyenlet megoldását. Tudjuk, hogy a gyök a [4, 5] intervallumban van.

a) A gyökhöz milyen közel kell indítani a húrmódszert, hogy az eljárás konvergáljon?

b) Használható-e a [4, 5] intervallumon az iteráció?

Lagrange multiplikátor módszer

1) Keressük meg az [math]f(x, y, z) = xy^2z^3(x,y,z \gt 0)[/math] szélsőértékét az [math]x + 2y + 3z = 6[/math] feltétel mellett! Vizsgáljuk meg a feltételes definitséget a kapott pontban!

Variáció számítás

1) Keressük meg az [math]I(y)[/math] funkcionálhoz tartozó extremális y függvényt!

[math]I(y) = \int_{-1}^{2}y'^2 + x^3 - 2xydx[/math]

[math]y(-1) = \frac{1}{6},~y(2)=\frac{5}{3}[/math]

2) Keressük meg az [math]I(y)[/math] funkcionálhoz tartozó extremális y függvényt!

[math]I(y) = \int_{-1}^{2}y'^3 + x^3 - 2xydx[/math]

[math]y(-1) = \frac{1}{6},~y(2)=\frac{5}{3}[/math]