Mérési jegyzőkönyv az

Egy programozott mérőrendszerrel alkalmazása

című laboratóriumi gyakorlatról

A mérés helyszíne:

A mérés időpontja:

A mérést végezték:

A mérést vezető oktató neve:

A jegyzőkönyvet tartalmazó fájl neve:

Felhasznált eszközök:

Eszköz megnevezése	Az eszköz típusa Azonosító száma	
Oszcilloszkóp Függvénygenerátor	Agilent Agilent	54622a
Digitális multiméter	Agilent	33220A 34401A
PC Mérőpanel	NEC	Jelcsatorna
Speciális SW		ML2-5 LabVIEW 8.2,
		so-rand2.exe, tvsio.exe,
Specialis kiegeszítő		RS232 hosszabbító kábel. DB9
		csatlakozókkal

Az elvégzett mérési feladatok

- Multiméterrel megmértük a váltóáramú komponens effektív értékét, ami 1/SQRT(2)

0,7 V.

=

1. Feszültség mérése LabVIEW vezérelt multiméterrel

 A mérési útmutatóban leírtak szerint megvizsgáltuk a VI-k beállításait az "Agilent 34401 Read single measurement.vi" megnyitása után, ill mindegyiknek beállítottuk a megadott GPIB0::22:INSTR címet a legördülő menüben.

→ A mérés eredménye helyes: 0,7 V

Agilent 34401 Read Single N File Edit View Project Opera ♥ ● ● 13pt	16asurement.vi Front Panel on My C te <u>T</u> ools <u>Window H</u> elp Application Font V Dov T	omputer ····································	
(c) 2005-2 VISA resource name	006 National Instruments. ALL RIGHTS RE Function (0: DC Voltage)	ESERVED. Measurement	
) 10 PIDU:22:1001R	TAL Voitage	Manual Resolution (5.5 Digits)	
	Enable Enable	() 5.5 Manual Range (1.00)	

2. Szinuszos vizsgálójel kiadása jelgenerátorral LabVIEW környezetben

2.1Konstans frekvenciájú szinuszjel generálása

Miután betöltöttük a "... sine output.vi" alkalmazást, és beállítottuk a megfelelő értékeket, az oscilloszkópon megjelent a megfelelő szinusz jel:

2.2 Változó frekvenciájú szinuszjel generálása

Módosítsa a Blokk Diagrammot úgy, hogy a generátor által kiadott jel végiglépkedjen az alábbi öt frekvencián: 1 kHz, 1.5 kHz, 2 kHz, 2.5 kHz, 3 kHz, és ezeket 1 másodpercig adja ki.

Egy **FOR** ciklussal egészítettük ki a blokk diagrammot:

Előlap:

freq step	
VISA session	Output Enabled? (T: Yes) Yes No
Frequency (Hz)	Amplitude (0.1 Vpp)
Offset (0.00 V)	Unit (0: Vpp)

→ Az oscilloszkópon leellenőriztük a helyes működést.

3. <u>Frekvenciamenetet meghatározó mérőrendszer készítése</u> 3.1A mérőrendszer alapváltozatának elkészítése

A specifikációnak megfelelően elkészítettük a virtuális műszert, ami az alábbi blokkdiagrammon látható:

A működést ellenőriztük a következő beállításokkal:

•

Start: 500 Hz, lépésköz 1 kHz, pontok száma: 10, a bemenetre adott jel nagysága 3 Veff

				Array
				0 1,05977
				1,05945
		VISA resource name		1,05938
		% GPIB0::22::INSTR		1,05906
				1,05844
	Output Enabled	d? (1: Yes)		1,05788
	Yes			1,05741
Vaveform Shape (1: Sine)	No			1,057
Sine 1				1.05676
Frequency (Hz)				1,0566
A 500.00	Amplitude (0.1 \	'pp)		0
9 500,00	3,00			0
Offset (0.00 V)	Unit (0: Yop)	XY Graph	Plot 0	
40.00		0,3533-		
		0,3532-		0
Number of Steps		0,3531 -		0
() 10		0,353-		0
freg step		0,3529		
() 1000		2 0,3520		
		Q.3526 -		
		0,3525 -		
		0,3524 -		
		0,3523 -		
		0,3522 -		
		0,3521 -		
		100	1000 10000	
			TIME	

3.2A mérőrendszer funkcióinak kibővítése

- Táblázat:

	Array
÷) o	2,99351
	2,99413
	2,99453
	2,99382
	2,99232
	2,99087
	2,98967
	2,98858
	2,98804
	2,98755

- Bode diagramnak megfelelő tengelyekkel rendelkező kijelző:

- Eredmények fileba exportálása:

• A mérőberendezés jelezze ki, hogy melyik vizsgált frekvencián csökken az átvitel -3 dB alá. (Segítség: használja a Functions palettáról az Array / **Threshold 1-D Array** nevû eszközt!)

• A mérőberendezés jelezze ki, hogy melyik vizsgált frekvencián csökken az átvitel -20 dB alá.

Kiegészítettük a blokkdiakrammot:

Megfelelő eredményt kaptunk az előlapon:

-3dB	
500	
-20dB	
6500	-

4. Szem-ábra vizsgálata

2400 Baud:

4800 Baud:

9600 Baud:

 \rightarrow Itt már nem visszanyerhető az ábra, nem láthatóak a határok,

míg az első kettőben kiolvashatóak a jelalakok, és van bennük amplitúdó és időzítési tartalék.