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Clustering

Distance Measures
Hierarchical Clustering
k -Means Algorithms
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The Problem of Clustering

Given a set of points, with a notion of 
distance between points, group the 
points into some number of clusters, so 
that members of a cluster are in some 
sense as close to each other as 
possible.
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Problems With Clustering

Clustering in two dimensions looks 
easy.
Clustering small amounts of data looks 
easy.
And in most cases, looks are not
deceiving.
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The Curse of Dimensionality

Many applications involve not 2, but 10 
or 10,000 dimensions.
High-dimensional spaces look different: 
almost all pairs of points are at about 
the same distance.

Assuming random points within a bounding 
box, e.g., values between 0 and 1 in each 
dimension.
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Example: SkyCat

A catalog of 2 billion “sky objects”
represented objects by their radiation in 
9 dimensions (frequency bands).
Problem: cluster into similar objects, 
e.g., galaxies, nearby stars, quasars, 
etc.
Sloan Sky Survey is a newer, better 
version.
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Example: Clustering CD’s 
(Collaborative Filtering)

Intuitively: music divides into categories, 
and customers prefer a few categories.

But what are categories really?

Represent a CD by the customers who 
bought it.
Similar CD’s have similar sets of 
customers, and vice-versa.
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The Space of CD’s

Think of a space with one dimension 
for each customer.

Values in a dimension may be 0 or 1 only.

A CD’s point in this space is             
(x1, x2,…, xk), where xi = 1 iff the i th
customer bought the CD.

Compare with the “correlated items”
matrix: rows = customers; cols. = CD’s.
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Example: Clustering Documents

Represent a document by a vector    
(x1, x2,…, xk), where xi = 1 iff the i th
word (in some order) appears in the 
document.

It actually doesn’t matter if k is infinite; 
i.e., we don’t limit the set of words.

Documents with similar sets of words 
may be about the same topic.
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Example: Protein Sequences

Objects are sequences of {C,A,T,G}.
Distance between sequences is edit 
distance, the minimum number of 
inserts and deletes needed to turn one 
into the other.
Note there is a “distance,” but no 
convenient space in which points “live.”
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Distance Measures

Each clustering problem is based on 
some kind of “distance” between 
points.
Two major classes of distance 
measure:

1. Euclidean
2. Non-Euclidean
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Euclidean Vs. Non-Euclidean

A Euclidean space has some number of 
real-valued dimensions and “dense” points.

There is a notion of “average” of two points.
A Euclidean distance is based on the locations 
of points in such a space.

A Non-Euclidean distance is based on 
properties of points, but not their 
“location” in a space.
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Axioms of a Distance Measure

d is a distance measure if it is a 
function from pairs of points to reals
such that:

1. d(x,y) > 0. 
2. d(x,y) = 0 iff x = y.
3. d(x,y) = d(y,x).
4. d(x,y) < d(x,z) + d(z,y) (triangle 

inequality ).
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Some Euclidean Distances

L2 norm : d(x,y) = square root of the 
sum of the squares of the differences 
between x and y in each dimension.

The most common notion of “distance.”

L1 norm : sum of the differences in 
each dimension.

Manhattan distance = distance if you had 
to travel along coordinates only.
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Examples of Euclidean Distances

x = (5,5)

y = (9,8)L2-norm:
dist(x,y) =
√(42+32)
= 5

L1-norm:
dist(x,y) =
4+3 = 7

4

35
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Non-Euclidean Distances

Jaccard distance for sets = 1 minus 
ratio of sizes of intersection and union.
Cosine distance = angle between 
vectors from the origin to the points in 
question.
Edit distance = number of inserts and 
deletes to change one string into 
another.
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Jaccard Distance

Example: p1 = 10111; p2 = 10011.
Size of intersection = 3; size of union = 4, 
Jaccard measure (not distance) = 3/4.

Need to make a distance function 
satisfying triangle inequality and other 
laws.
d(x,y) = 1 – (Jaccard measure) works.
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Why J.D. Is a Distance Measure

d(x,x) = 0 because x∩x = x∪x.
d(x,y) = d(y,x) because union and 
intersection are symmetric.
d(x,y) > 0 because |x∩y| < |x∪y|.
d(x,y) < d(x,z) + d(z,y) trickier
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Methods of Clustering

Hierarchical:
Initially, each point in cluster by itself.
Repeatedly combine the two “closest”
clusters into one.

Point Assignment:
Maintain a set of clusters.
Place points into “closest” cluster.
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Hierarchical Clustering

Key problem: as you build clusters, how 
do you represent the location of each 
cluster, to tell which pair of clusters is 
closest?
Euclidean case: each cluster has a 
centroid = average of its points.

Measure intercluster distances by distances 
of centroids.
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Example

(5,3)
o

(1,2)
o

o  (2,1) o  (4,1)

o  (0,0) o
(5,0)

x (1.5,1.5)

x (4.5,0.5)
x (1,1)

x (4.7,1.3)
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And in the Non-Euclidean Case?

The only “locations” we can talk about 
are the points themselves.

I.e., there is no “average” of two points.

Approach 1: clustroid = point “closest”
to other points.

Treat clustroid as if it were centroid, when 
computing intercluster distances. 
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“Closest”?

Possible meanings:
1. Smallest maximum distance to the other 

points.
2. Smallest average distance to other 

points.
3. Smallest sum of squares of distances to 

other points.
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Other Approaches to Defining 
“Nearness” of Clusters

Approach 2: intercluster distance = 
minimum of the distances between any 
two points, one from each cluster.
Approach 3: Pick a notion of “cohesion”
of clusters, e.g., maximum distance from 
the clustroid.

Merge clusters whose union is most 
cohesive.
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k –Means Algorithm(s)

Assumes Euclidean space.
Start by picking k, the number of 
clusters.
Initialize clusters by picking one point 
per cluster.

For instance, pick one point at random, 
then k -1 other points, each as far away as 
possible from the previous points.
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Populating Clusters

1. For each point, place it in the cluster 
whose current centroid it is nearest.

2. After all points are assigned, fix the 
centroids of the k clusters.

3. Reassign all points to their closest 
centroid.

Sometimes moves points between 
clusters.
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Example
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Getting k Right

Try different k, looking at the change in 
the average distance to centroid, as k
increases.

Average falls rapidly until right k, then 
changes little.

k

Average
distance to
centroid

Best value
of k
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Example
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BFR Algorithm

BFR (Bradley-Fayyad-Reina) is a variant 
of k -means designed to handle very 
large (disk-resident) data sets.
It assumes that clusters are normally 
distributed around a centroid in a 
Euclidean space.

Standard deviations in different dimensions 
may vary.
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BFR --- (2)

Points are read one main-memory-full at 
a time.
Most points from previous memory loads 
are summarized by simple statistics.
To begin, from the initial load we select 
the initial k centroids by some sensible 
approach.
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Initialization: k -Means

Possibilities include:
1. Take a small sample and cluster 

optimally.
2. Take a sample; pick a random point, and 

then k – 1 more points, each as far from 
the previously selected points as possible.
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Three Classes of Points

1. The discard set : points close enough to 
a centroid to be represented statistically.

2. The compression set : groups of points 
that are close together but not close to 
any centroid.  They are represented 
statistically, but not assigned to a cluster.

3. The retained set : isolated points.
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Representing Sets of Points

For each cluster, the discard set is 
represented by:

1. The number of points, N.
2. The vector SUM, whose i th component is 

the sum of the coordinates of the points in 
the i th dimension.

3. The vector SUMSQ: i th component = sum 
of squares of coordinates in i th dimension.
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Comments

2d + 1 values represent any number of 
points.

d = number of dimensions.

Averages in each dimension (centroid 
coordinates) can be calculated easily as 
SUMi /N.

SUMi = i th component of SUM.
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Comments --- (2)

Variance of a cluster’s discard set in 
dimension i can be computed by: 

(SUMSQi /N ) – (SUMi /N )2

And the standard deviation is the 
square root of that.
The same statistics can represent any 
compression set.
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“Galaxies” Picture

A cluster.  Its points
are in the DS.

The centroid

Compressed sets.
Their points are in
the CS.

Points in
the RS
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Processing a “Memory-Load”
of Points

1. Find those points that are “sufficiently 
close” to a cluster centroid; add those 
points to that cluster and the DS.

2. Use any main-memory clustering 
algorithm to cluster the remaining 
points and the old RS.

Clusters go to the CS; outlying points to 
the RS.
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Processing --- (2)

3. Adjust statistics of the clusters to 
account for the new points.

4. Consider merging compressed sets in 
the CS.

5. If this is the last round, merge all 
compressed sets in the CS and all RS 
points into their nearest cluster.



43

A Few Details . . .

How do we decide if a point is “close 
enough” to a cluster that we will add 
the point to that cluster?
How do we decide whether two 
compressed sets deserve to be 
combined into one?
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How Close is Close Enough?

We need a way to decide whether to 
put a new point into a cluster.
BFR suggest two ways:

1. The Mahalanobis distance is less than a 
threshold.

2. Low likelihood of the currently nearest 
centroid changing.
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Mahalanobis Distance

Normalized Euclidean distance.
For point (x1,…,xk) and centroid 
(c1,…,ck):

1. Normalize in each dimension: yi = |xi -ci|/σi

2. Take sum of the squares of the yi ’s.
3. Take the square root.
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Mahalanobis Distance --- (2)

If clusters are normally distributed in d
dimensions, then one standard 
deviation corresponds to a distance √d.

I.e., 70% of the points of the cluster will 
have a Mahalanobis distance < √d.

Accept a point for a cluster if its M.D. is 
< some threshold, e.g. 4 standard 
deviations.
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Picture: Equal M.D. Regions
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Should Two CS Subclusters Be 
Combined?

Compute the variance of the combined 
subcluster.

N, SUM, and SUMSQ allow us to make that 
calculation.

Combine if the variance is below some 
threshold.


