Úrkommunikáció
Space Communication 2023/9.

Decoding of Reed-Solomon codes

Using the matrix $\overline{\bar{H}}$ and the received vector \bar{v} the decoder could calculate the so called syndrome vector:

$$
\bar{s}^{T}=\overline{\bar{H}} \cdot \bar{v}^{T}=\overline{\bar{H}} \cdot[\bar{c}+\bar{e}]^{T}=\underbrace{\overline{\bar{H}} \cdot \bar{c}^{T}}_{\overline{0}}+\overline{\bar{H}} \cdot \bar{e}^{T}=\overline{\bar{H}} \cdot \bar{e}^{T}
$$

Decision in the case of $\bar{S}^{T}=\overline{0}^{T}$:

- Trivial: $\bar{v}=\overline{c_{i}}$
- Unsolvable: $\bar{v}=\overline{c_{j}} \neq \overline{c_{i}}$ that we sent

Remark: Error processing in general
In the case of $\bar{S}^{T} \neq \overline{0}^{T}$ an equation system of N-K equations should be solved for $2 \cdot t_{\text {corr }}$ unknowns (each errors have two attributes: position and value)

$$
\bar{s}^{T}=\overline{\bar{H}} \cdot \bar{e}^{T}
$$

The parity check matrix and the error vector:

$$
\overline{\bar{H}}=\left[\begin{array}{llll}
\bar{h}_{1}^{T} & \bar{h}_{2}^{T} & \ldots & \bar{h}_{N}^{T}
\end{array}\right]
$$

The column vectors should be different and excluding $\overline{0}^{T}$, because they localizing the errors.

$$
\bar{e}=\left[0,0, \ldots, e_{i}, \ldots, e_{j}, \ldots, 0, \ldots, 0\right]
$$

Decoding of Reed-Solomon codes

In the case of $\bar{s}^{T} \neq \overline{0}^{T}$ an equation system of $N-K$ equations should be solved for $2 \cdot t_{\text {corr }}$ unknowns (each errors have two attributes: position and value)

\[

\]

The column vectors are different and excluding $\overline{0}^{T}$, therefore localizing the errors. The syndrome vector:

$$
\bar{s}^{T}=\sum_{n} e_{n} \cdot \bar{h}_{n}^{T}=\left[\begin{array}{c}
s_{1} \\
s_{2} \\
\vdots \\
s_{N-K}
\end{array}\right]
$$

Or the corresponding non-linear equation system of $N-K$ equations:

$$
\begin{gathered}
s_{1}=e_{i} \cdot h_{i}^{1}+e_{j} \cdot h_{j}^{1}+e_{k} \cdot h_{k}^{1}+\cdots \\
s_{2}=e_{i} \cdot h_{i}^{2}+e_{j} \cdot h_{j}^{2}+e_{k} \cdot h_{k}^{2}+\cdots \\
s_{N-K}=e_{i} \cdot h_{i}^{(N-K)}+e_{j} \cdot h_{j}^{(N-K)}+e_{k} \cdot h_{k}^{(N-K)}+\cdots
\end{gathered}
$$

Peterson-Gorenstein-Zierler algorithm

Peterson-Gorenstein-Zierler algorithm is an efficient method to solve the non-linear equation system for small number of errors.
Suppose two errors to be corrected:
$\bar{e}=\left[0,0, \ldots, e_{i}, \ldots, e_{j}, \ldots, 0\right], \quad t_{\text {corr }}=\left\lfloor\frac{d_{\text {min }}-1}{2}\right\rfloor=\left\lfloor\frac{N-K}{2}\right\rfloor=2 \xrightarrow{\text { yields }} N-K=4$
The goal is the determination of the error locators: h_{i}^{1} and h_{j}^{1} and the error values e_{i} and e_{j}.
Let $\mathrm{L}(\mathrm{x})$ the error locator polynomial with roots h_{i}^{1} and $h_{j}^{1}: L\left(h_{i}\right)=0$ and $L\left(h_{j}\right)=0$

$$
L(x)=\left(x-h_{i}\right) \cdot\left(x-h_{j}\right)=x^{2} \underbrace{-\left(h_{i}+h_{j}\right)}_{L_{1}} \cdot x \underbrace{+h_{i} \cdot h_{j}}_{L_{0}}=x^{2}+L_{1} \cdot x+L_{0}
$$

Step A: Calculate the syndrome vector: $\bar{s}^{T}=\overline{\bar{H}} \cdot \bar{v}^{T}=\overline{\bar{H}} \cdot \bar{e}^{T}$
The equation system to be solved:
Because h_{i}^{1} and h_{j}^{1} are roots of $\mathrm{L}(\mathrm{x})$:
$s_{1}=e_{i} \cdot h_{i}^{1}+e_{j} \cdot h_{j}^{1}$
a)
$0=e_{i} \cdot h_{i}^{1} \cdot L\left(h_{i}^{1}\right)=e_{i} \cdot h_{i}^{3}+L_{1} \cdot e_{i} \cdot h_{i}^{2}+L_{0} \cdot e_{i} \cdot h_{i}^{1}$
$s_{2}=e_{i} \cdot h_{i}^{2}+e_{j} \cdot h_{j}^{2}$
b) $0=e_{j} \cdot h_{j}^{1} \cdot L\left(h_{j}^{1}\right)=e_{j} \cdot h_{j}^{3}+L_{1} \cdot e_{j} \cdot h_{j}^{2}+L_{0} \cdot e_{j} \cdot h_{j}^{1}$
$s_{3}=e_{i} \cdot h_{i}^{3}+e_{j} \cdot h_{j}^{3} \quad$ c)
$0=e_{i} \cdot h_{i}^{2} \cdot L\left(h_{i}^{1}\right)=e_{i} \cdot h_{i}^{4}+L_{1} \cdot e_{i} \cdot h_{i}^{3}+L_{0} \cdot e_{i} \cdot h_{i}^{2}$
$s_{4}=e_{i} \cdot h_{i}^{4}+e_{j} \cdot h_{j}^{4}$
d)
$0=e_{j} \cdot h_{j}^{2} \cdot L\left(h_{j}^{1}\right)=e_{j} \cdot h_{j}^{4}+L_{1} \cdot e_{j} \cdot h_{j}^{3}+L_{0} \cdot e_{j} \cdot h_{j}^{2}$

Step B : Solve the equation system of two linear equations for the coefficients of $\mathrm{L}(\mathrm{x})$:
a) $+b$): $0=s_{3}+L_{1} \cdot s_{2}+L_{0} \cdot s_{1}$
c) $+d): 0=s_{4}+L_{1} \cdot s_{3}+L_{0} \cdot s_{2} \xrightarrow{\text { yields }} L_{1}$ and L_{0}

Peterson-Gorenstein-Zierler algorithm

Step C: Solve (find the roots) the quadratic equation for h_{i}^{1} and h_{j}^{1} error locators:
$x^{2}+L_{1} \cdot x+L_{0}=0 \xrightarrow{\text { yields }} \hat{h}_{i}$ and $\hat{h}_{j} ;$
$\hat{h}_{i, j}=-\frac{L_{1}}{2} \pm \sqrt[2]{\left(\frac{L_{1}}{2}\right)^{2}-L_{0}}$
Step D : Solve the equation system of two equations for the error values e_{i} and e_{j}
$s_{1}=e_{i} \cdot h_{i}^{1}+e_{j} \cdot h_{j}^{1}$
$s_{2}=e_{i} \cdot h_{i}^{2}+e_{j} \cdot h_{j}^{2} \xrightarrow{\text { yields }} \hat{e}_{i}$ and \hat{e}_{j}
Last steps for decoding:
Decided error vector: $\quad \hat{\bar{e}}=\left[0,0, \cdots, \hat{e}_{i}, \ldots, \hat{e}_{j}, \ldots, 0\right]$
Decided code vector: $\quad \hat{\bar{c}}=\bar{v}-\hat{\bar{e}}$
Remark: The algorithm is also applicable for more errors but not very efficiently. E.g. y errors:

$$
\begin{aligned}
& L(x)=\underbrace{\left(x-h_{i}\right) \cdot\left(x-h_{j}\right) \cdots\left(x-h_{k}\right)}_{y}=x^{y}+L_{y-1} \cdot x^{y-1}+\cdots+L_{1} \cdot x+L_{0} \\
& 0=e_{i} \cdot h_{i}^{1} \cdot L\left(h_{i}^{1}\right)=e_{i} \cdot h_{i}^{y+1}+L_{y-1} \cdot e_{i} \cdot h_{i}^{y}+\cdots+L_{1} \cdot e_{i} \cdot h_{i}^{2}+L_{0} \cdot e_{i} \cdot h_{i}^{1} \\
& 0=e_{j} \cdot h_{j}^{1} \cdot L\left(h_{j}^{1}\right)=e_{j} \cdot h_{j}^{y+1}+L_{y-1} \cdot e_{j} \cdot h_{j}^{y}+\cdots+L_{1} \cdot e_{j} \cdot h_{j}^{2}+L_{0} \cdot e_{j} \cdot h_{j}^{1} \\
& \cdots \\
& 0=e_{k} \cdot h_{k}^{1} \cdot L\left(h_{k}^{1}\right)=e_{k} \cdot h_{k}^{y+1}+L_{y-1} \cdot e_{k} \cdot h_{k}^{y}+\cdots+L_{1} \cdot e_{k} \cdot h_{k}^{2}+L_{0} \cdot e_{k} \cdot h_{k}^{1} \\
& \cdots
\end{aligned}
$$

Example: Reed-Solomon code over GF(q)

Defining the parameters ($\mathrm{N}, \mathrm{K}, \mathrm{q}, \alpha$):

- order of primitive element α is $\mathrm{m}=\mathrm{q}-1$
- $N \leq m=q-1$ (remember Method A)
- MDS: $t_{\text {corr }}=\left\lfloor\frac{d_{\text {min }}-1}{2}\right\rfloor=\left\lfloor\frac{N-K}{2}\right\rfloor \xrightarrow{\text { yields }} K=N-2 \cdot t_{\text {corr }}$

Correction of two errors:
Smallest appropriate $\mathrm{q}=7, \mathrm{~N}=6$ max., $\mathrm{K}=2$, use $\alpha=3$: $(\mathrm{N}=6, \mathrm{~K}=2, \mathrm{q}=7, \alpha=3)$
Defining the generator matrix (remember Method B)

$$
\overline{\bar{G}}=\left[\begin{array}{cccccc}
1 & 1 & 1 & & 1 & 1 \\
1 & \alpha & \alpha^{2} & & \alpha^{N-2} & \alpha^{N-1} \\
1 & \alpha^{2} & \alpha^{4} & \vdots & \alpha^{2(N-2)} & \alpha^{2(N-1)} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
1 & \alpha^{K-1} & \alpha^{2(K-1)} & & \alpha^{(K-1)(N-2)} & \alpha^{(K-1)(N-1)}
\end{array}\right]=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 3 & 2 & 6 & 4 & 5
\end{array}\right]
$$

Defining the matrix (remember Method C)

$$
\overline{\bar{H}}=\left[\begin{array}{cccccc}
1 & \alpha^{1} & \alpha^{2 \cdot 1} & & \alpha^{(N-2) \cdot 1} & \alpha^{(N-1) \cdot 1} \\
1 & \alpha^{2} & \alpha^{2 \cdot 2} & & \alpha^{(N-2) \cdot 2} & \alpha^{(N-1) \cdot 2} \\
1 & \alpha^{3} & \alpha^{2 \cdot 3} & \vdots & \alpha^{(N-2) \cdot 3} & \alpha^{(N-1) \cdot 3} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
1 & \alpha^{N-K} & \alpha^{2 \cdot(N-K)} & \alpha^{(N-2) \cdot(N-K)} & \alpha^{(N-1) \cdot(N-K)}
\end{array}\right]=\left[\begin{array}{cccccc}
1 & 3 & 2 & 6 & 4 & 5 \\
1 & 2 & 4 & 1 & 2 & 4 \\
1 & 6 & 1 & 6 & 1 & 6 \\
1 & 4 & 2 & 1 & 4 & 2
\end{array}\right]
$$

Example: Reed-Solomon code over GF(q)

Let the message vector.

$$
\bar{u}=\left[\begin{array}{ll}
3 & 4
\end{array}\right]
$$

The corresponding code vector:

$$
\bar{c}=\bar{u} \cdot \overline{\bar{G}}=\left[\begin{array}{ll}
3 & 4
\end{array}\right] \cdot\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 3 & 2 & 6 & 4 & 5
\end{array}\right]=\left[\begin{array}{llllll}
0 & 1 & 4 & 6 & 5 & 2
\end{array}\right]
$$

Let the two errors represented by:

$$
\bar{e}=\left[\begin{array}{llllll}
0 & 5 & 0 & 4 & 0 & 0
\end{array}\right]
$$

Then the received vector:

$$
\bar{v}=\bar{c}+\bar{e}=\left[\begin{array}{llllll}
0 & 6 & 4 & 3 & 5 & 2
\end{array}\right]
$$

Step A: Calculate the syndrome vector:

$$
\bar{s}^{T}=\overline{\bar{H}} \cdot \bar{v}^{T}=\overline{\bar{H}} \cdot \bar{e}^{T}=\left[\begin{array}{llllll}
1 & 3 & 2 & 6 & 4 & 5 \\
1 & 2 & 4 & 1 & 2 & 4 \\
1 & 6 & 1 & 6 & 1 & 6 \\
1 & 4 & 2 & 1 & 4 & 2
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
6 \\
4 \\
3 \\
5 \\
2
\end{array}\right]=\left[\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3} \\
s_{4}
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
5 \\
3
\end{array}\right]
$$

Step B: Solve the equation system of two linear equations for the coefficients of $\mathrm{L}(\mathrm{x})$:
$0=5+L_{1} \cdot 0+L_{0} \cdot 4 \xrightarrow{\text { yields }} L_{0}=\frac{-5}{4}=\frac{2}{4}=4$
$0=3+L_{1} \cdot 5+L_{0} \cdot 0 \xrightarrow{\text { yields }} L_{1}=\frac{-3}{5}=\frac{4}{5}=5$

Example: Reed-Solomon code over GF(q)

Step C: Solve the quadratic equation for h_{i}^{1} and h_{j}^{1} error locators:
$x^{2}+L_{1} \cdot x+L_{0}=0 \xrightarrow{\text { yields }} \hat{h}_{i}$ and $\hat{h}_{j} ; \quad \hat{h}_{i, j}=-\frac{L_{1}}{2} \pm \sqrt[2]{\left(\frac{L_{1}}{2}\right)^{2}-L_{0}}$
$x^{2}+5 \cdot x+4=0 ; \hat{h}_{i, j}=-\frac{5}{2} \pm \sqrt[2]{\left(\frac{5}{2}\right)^{2}-4}=\frac{2}{2} \pm \sqrt[2]{(6)^{2}-4}=1 \pm \sqrt[2]{4}=1 \pm 2 ;$

$$
\hat{h}_{i}=3 \text { and } \hat{h}_{j}=6\left[\begin{array}{llllll}
1 & 3 & 2 & 6 & 4 & 5 \\
1 & 2 & 4 & 1 & 2 & 4 \\
1 & 6 & 1 & 6 & 1 & 6 \\
1 & 4 & 2 & 1 & 4 & 2
\end{array}\right]
$$

Step D: Solve the equation system of two equations for the error values e_{i} and e_{j}
$s_{1}=e_{i} \cdot h_{i}^{1}+e_{j} \cdot h_{j}^{1}$
$s_{2}=e_{i} \cdot h_{i}^{2}+e_{j} \cdot h_{j}^{2} \xrightarrow{\text { yields }} \hat{e}_{i}$ and \hat{e}_{j}
a) $\quad 4=e_{i} \cdot 3+e_{j} \cdot 6$
b) $\quad 0=e_{i} \cdot 2+e_{j} \cdot 1$

6xb) $\quad 0=e_{i} \cdot 5+e_{j} \cdot 6$
a) $-6 x b$)
$4=e_{i} \cdot 5$
$e_{i}=\frac{4}{5}=5$
From b) $0=3+e_{j} \cdot 1$
$e_{j}=-3=4$

Last steps for decoding:
Decided error vector:
Decided code vector:

$$
\begin{aligned}
& \hat{\bar{e}}=[0,5,0,4,0,0] \\
& \hat{\bar{c}}=\bar{v}-\hat{\bar{e}}
\end{aligned}
$$

2nd Example: Reed-Solomon code over GF(q)

Let the message vector.

$$
\bar{u}=\left[\begin{array}{ll}
2 & 4
\end{array}\right]
$$

The corresponding code vector:

$$
\bar{c}=\bar{u} \cdot \overline{\bar{G}}=\left[\begin{array}{ll}
2 & 4
\end{array}\right] \cdot\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 3 & 2 & 6 & 4 & 5
\end{array}\right]=\left[\begin{array}{llllll}
6 & 0 & 3 & 5 & 4 & 1
\end{array}\right]
$$

Let the two errors represented by:

$$
\bar{e}=\left[\begin{array}{llllll}
{[3} & 0 & 0 & 0 & 4 & 0
\end{array}\right]
$$

Then the received vector:

$$
\bar{v}=\bar{c}+\bar{e}=\left[\begin{array}{llllll}
2 & 0 & 3 & 5 & 1 & 1
\end{array}\right]
$$

Step A: Calculate the syndrome vector:

$$
\bar{s}^{T}=\overline{\bar{H}} \cdot \bar{v}^{T}=\overline{\bar{H}} \cdot \bar{e}^{T}=\left[\begin{array}{llllll}
1 & 3 & 2 & 6 & 4 & 5 \\
1 & 2 & 4 & 1 & 2 & 4 \\
1 & 6 & 1 & 6 & 1 & 6 \\
1 & 4 & 2 & 1 & 4 & 2
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
0 \\
3 \\
5 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3} \\
s_{4}
\end{array}\right]=\left[\begin{array}{l}
5 \\
4 \\
0 \\
5
\end{array}\right]
$$

Step B: Solve the equation system of two linear equations for the coefficients of $L(x)$:
$0=0+L_{1} \cdot 4+L_{0} \cdot 5 \xrightarrow{\text { yields }} L_{0}=2 / 4=4$
$0=5+L_{1} \cdot 0+L_{0} \cdot 4 \xrightarrow{\text { yields }} L_{1}=-6 / 4=1 / 4=2$
$-5=4 \mathrm{~L} 0 ; \mathrm{L} 0=-5 / 4 ; \mathrm{L} 0=2 / 4=4$

Example: Reed-Solomon code over GF(q)

Step C: Solve the quadratic equation for h_{i}^{1} and h_{j}^{1} error locators:

$$
\begin{aligned}
& x^{2}+L_{1} \cdot x+L_{0}=0 \xrightarrow{\text { yields }} \hat{h}_{i} \text { and } \hat{h}_{j} ; \quad \hat{h}_{i, j}=-\frac{L_{1}}{2} \pm \sqrt[2]{\left(\frac{L_{1}}{2}\right)^{2}-L_{0}} \\
& x^{2}+2 \cdot x+4=0 ; \quad \hat{h}_{i, j}=-\frac{2}{2} \pm \sqrt[2]{\left(\frac{2}{2}\right)^{2}-4}=6 \pm \sqrt[2]{(1)^{2}-4}=6 \pm \sqrt[2]{4}=6 \pm 2
\end{aligned}
$$

$$
\hat{h}_{i}=1 \text { and } \hat{h}_{j}=4 \quad\left[\begin{array}{llllll}
1 & 3 & 2 & 6 & 4 & 5 \\
1 & 2 & 4 & 1 & 2 & 4 \\
1 & 6 & 1 & 6 & 1 & 6 \\
1 & 4 & 2 & 1 & 4 & 2
\end{array}\right]
$$

Step D : Solve the equation system of two linear equations for the error values e_{i} and e_{j}
$s_{1}=e_{i} \cdot h_{i}^{1}+e_{j} \cdot h_{j}^{1}$
$s_{2}=e_{i} \cdot h_{i}^{2}+e_{j} \cdot h_{j}^{2} \xrightarrow{\text { yields }} \hat{e}_{i}$ and \hat{e}_{j}
a) $\quad 5=e_{i} \cdot 1+e_{j} \cdot 4$
b) $\quad 4=e_{i} \cdot 1+e_{j} \cdot 2$

$$
e_{i}=3 \quad e_{j}=4
$$

Last steps for decoding:
Decided error vector:
Decided code vector:

$$
\begin{aligned}
& \hat{\bar{e}}=[3,0,0,0,4,0] \\
& \hat{\bar{c}}=\bar{v}-\hat{\bar{e}}
\end{aligned}
$$

Optional home work: Reed-Solomon code over GF(q)

Let the message vector.

$$
\bar{u}=\left[\begin{array}{ll}
{[}
\end{array}\right]
$$

The corresponding code vector:

$$
\bar{c}=\bar{u} \cdot \overline{\bar{G}}=[\quad] \cdot\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 3 & 2 & 6 & 4 & 5
\end{array}\right]=[
$$

Let the two errors represented by:

$$
\bar{e}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Then the received vector:

$$
\bar{v}=\bar{c}+\bar{e}=[\quad]
$$

Step A: Calculate the syndrome vector:

$$
\bar{s}^{T}=\overline{\bar{H}} \cdot \bar{v}^{T}=\overline{\bar{H}} \cdot \bar{e}^{T}=\left[\begin{array}{llllll}
1 & 3 & 2 & 6 & 4 & 5 \\
1 & 2 & 4 & 1 & 2 & 4 \\
1 & 6 & 1 & 6 & 1 & 6 \\
1 & 4 & 2 & 1 & 4 & 2
\end{array}\right] \cdot[]=\left[\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3} \\
s_{4}
\end{array}\right]=[]
$$

Step B: Solve the equation system of two linear equations for the coefficients of $L(x)$:
$\begin{array}{lll}0= & +L_{1} \cdot & +L_{0} \cdot\end{array} \quad \begin{aligned} & \text { yields } \\ & 0=\end{aligned} L_{0}=$

Example: Reed-Solomon code over GF(q)

Step C: Solve the quadratic equation for h_{i}^{1} and h_{j}^{1} error locators:

Step D : Solve the equation system of two linear equations for the error values e_{i} and e_{j}
$s_{1}=e_{i} \cdot h_{i}^{1}+e_{j} \cdot h_{j}^{1}$
$s_{2}=e_{i} \cdot h_{i}^{2}+e_{j} \cdot h_{j}^{2} \xrightarrow{\text { yields }} \hat{e}_{i}$ and \hat{e}_{j}
a) $\quad=e_{i} \cdot+e_{j}$.
b) $\quad=e_{i} \cdot+e_{j}$.

$$
e_{i}=\quad e_{j}=
$$

Last steps for decoding:
Decided error vector:

$$
\hat{\bar{e}}=[0,0,0,0,0,0]
$$

$$
\text { Decided code vector: } \quad \hat{\bar{c}}=\bar{v}-\hat{\bar{e}}
$$

$$
\begin{aligned}
& x^{2}+L_{1} \cdot x+L_{0}=0 \xrightarrow{\text { yields }} \hat{h}_{i} \text { and } \hat{h}_{j} ; \quad \hat{h}_{i, j}=-\frac{L_{1}}{2} \pm \sqrt[2]{\left(\frac{L_{1}}{2}\right)^{2}-L_{0}} \\
& x^{2}+\cdot x+=0 ; \quad \hat{h}_{i, j}=-- \pm \sqrt[2]{(-)^{2}-}=- \pm \sqrt[2]{()^{2}-}= \pm \sqrt[2]{ }= \pm ; \\
& \hat{h}_{i}=\text { and } \hat{h}_{j}=\left[\begin{array}{llllll}
1 & 3 & 2 & 6 & 4 & 5 \\
1 & 2 & 4 & 1 & 2 & 4 \\
1 & 6 & 1 & 6 & 1 & 6 \\
1 & 4 & 2 & 1 & 4 & 2
\end{array}\right]
\end{aligned}
$$

