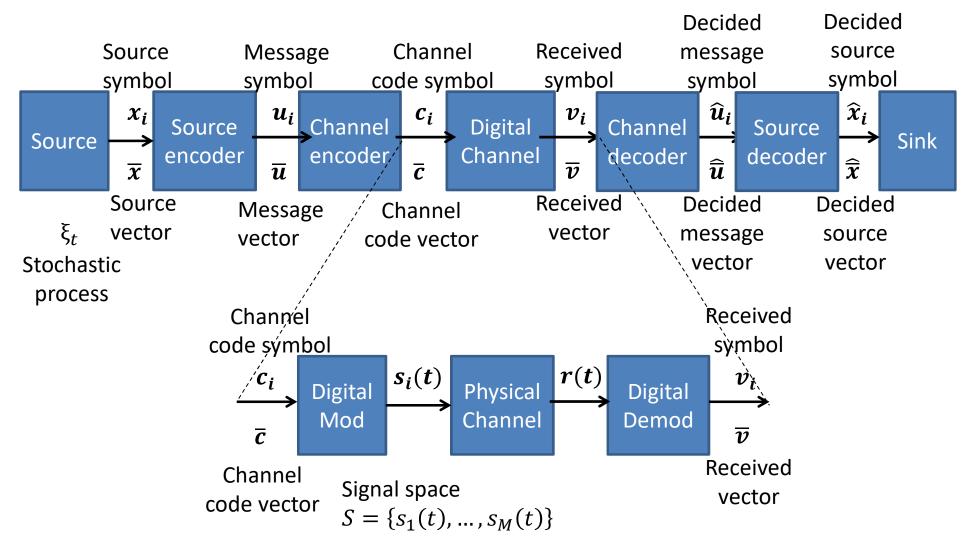
Űrkommunikáció Space Communication 2023/10.

System overview Modulation and Physical Channel



Capacity of the Physical Channel

- Until now: Investigation of time and value discrete channel
 - e.g. BSC, abstraction/model of real channels
- Now: Time and value continuous channel
 - because thermal noise is always present in physical systems

Entropy of continuous valued stochastic process (WSS, with $f_x(x)$ first order distribution)

$$H(\xi_{x}) \stackrel{\text{\tiny def}}{=} -E\{ldf_{x}(x)\} = \int_{x=-\infty}^{\infty} f_{x}(x) \cdot ld \frac{1}{f_{x}(x)} dx$$

Remark: Channel capacity = Amount of information can be transmitted

Shannon's Definition: Channel capacity $\left[\frac{Shannon}{channel use}\right]$, $\left[\frac{bit}{channel use}\right]$, e.g. [bit/sec]

Discrete Channel,

X and Y are discrete RVs

- $C = \max_{p(x)} |(X;Y) =$ $= \max_{p(x)} [H(X) - H(X|Y)] =$ $= \max [H(Y) - H(Y|X)] =$
- $= \max_{p(x)} [H(Y) H(Y|X)] =$ $= \max_{p(x)} D(p(x_i, y_j) || p(x_i) \cdot p(y_j))$

Continuous Channel

x(t) and y(t) are continuous stochastic processes with $f_x(x)$ and $f_y(y)$ first order distribution

$$C = \max_{f_{x}(x)} \tilde{I}(\xi_{x}; \xi_{y}) =$$

= $\max_{f_{x}(x)} [H(\xi_{x}) - H(\xi_{x}|\xi_{y})] =$
= $\max_{f_{x}(x)} [H(\xi_{y}) - H(\xi_{y}|\xi_{x})] =$
= $\max_{f_{x}(x)} D(f_{x,y}(x, y)||f_{x}(x) \cdot f_{y}(y))$

AWGN Channel

Additive White Gaussian Noise: AWGN Additive: n(t) y(t)=x(t)+n(t) x(t) → White \Leftrightarrow constant Power Spectral Density, Auto-Correlation function Dirac: $R_{nn}(\tau) = \int_{-\infty}^{\infty} S_n(f) \cdot e^{j2\pi f\tau} df = E\{n(t) \cdot n^*(t-\tau)\}$ $S_n(f)$ ${\mathcal F}$ $N_{0}/2$ **>** f **>**τ $N_0 = \frac{h \cdot f}{exp\left(\frac{h \cdot f}{k \cdot T}\right) - 1}$ Gaussian: $G(\mu_n = 0, \sigma_n^2 = \frac{N_0}{2})$ $f_n^{\mu \circ 0, \sigma \circ 10} = f_n^{(1)}(n) = \frac{1}{\sqrt{2\pi\sigma_n^2}} exp\left(-\frac{n^2}{2\sigma_n^2}\right)$ 0.9 0.8 h – Planck constant 0.7 0.6 k – Boltzmann constant 0.5 T_0 – ca. 19°C 0.4 0.3 0.2

0.1

-4 -3

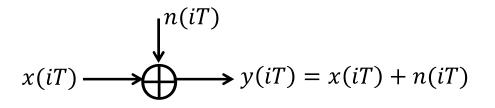
-2 -1

1 2

3

0

Capacity of Time discrete AWGN, D-AWGN



$$C_{D-AW} = \max_{f_{x}(x)} \left[H(\xi_{y}) - H(\xi_{y} | \xi_{x}) \right] = \max_{f_{x}(x)} \left[H(\xi_{y} = \xi_{x} + \xi_{n}) - H(\xi_{n}) \right]$$

It can be proved, that C_{AWGN} is maximal, if the input Gaussian $G(\mu_x = 0, \sigma_x^2)$ $f_x^{(1)}(x) = \frac{1}{\sqrt{2\pi\sigma_x^2}} exp\left(-\frac{x^2}{2\sigma_x^2}\right)$

Let P_{x} the average power of the input (valid for ergodic process)

$$P_{x} = \lim_{k \to \infty} \frac{1}{k} \sum_{i=1}^{k} x_{i}^{2} = \sigma_{x}^{2} = \int_{-\infty}^{\infty} x^{2} f_{x}^{(1)}(x) dx$$

The Entropy of the input:

$$H(\xi_{x}) = \int_{-\infty}^{\infty} f_{x}^{(1)}(x) \cdot ld \frac{1}{f_{x}^{(1)}(x)} dx$$

Capacity of Time discrete AWGN, D-AWGN

The Entropy of the input:

$$H(\xi_{x}) = -\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma_{x}^{2}}} exp\left(-\frac{x^{2}}{2\sigma_{x}^{2}}\right) \cdot ld\left(\frac{1}{\sqrt{2\pi\sigma_{x}^{2}}} exp\left(-\frac{x^{2}}{2\sigma_{x}^{2}}\right)\right) dx = \frac{1}{\ln 2} \left[ln\left(\frac{1}{\sqrt{2\pi\sigma_{x}^{2}}}\right) - \frac{x^{2}}{2\sigma_{x}^{2}}\right]$$

$$= -\frac{1}{\ln 2} ln\left(\frac{1}{\sqrt{2\pi\sigma_{x}^{2}}}\right) \cdot \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma_{x}^{2}}} exp\left(-\frac{x^{2}}{2\sigma_{x}^{2}}\right) dx + \frac{1}{\ln 2} \cdot \int_{-\infty}^{\infty} \frac{x^{2}}{2\sqrt{2\pi\sigma_{x}^{2}}} exp\left(-\frac{x^{2}}{2\sigma_{x}^{2}}\right) dx = ld\sqrt{2\pi\sigma_{x}^{2}} + \frac{2}{2 \cdot ln2} \cdot \frac{1}{\sqrt{2\pi\sigma_{x}^{2}}} \cdot \int_{0}^{\infty} x^{2} \cdot exp\left(-\frac{x^{2}}{2\sigma_{x}^{2}}\right) dx = ld\sqrt{2\pi\sigma_{x}^{2}} + \frac{2}{2 \cdot ln2} \cdot \frac{1}{\sqrt{2\pi\sigma_{x}^{3}}} \cdot \int_{0}^{\infty} x^{2} \cdot exp\left(-\frac{x^{2}}{2\sigma_{x}^{2}}\right) dx = ld\sqrt{2\pi\sigma_{x}^{2}} + \frac{1}{ln2} \cdot \frac{1}{\sqrt{2\pi\sigma_{x}^{3}}} \cdot \frac{\sqrt{\pi}}{4 \cdot a^{3/2}} = \frac{1}{2} \cdot ld(2\pi\sigma_{x}^{2}) + \frac{1}{ln2} \cdot \frac{1}{\sqrt{2\pi\sigma_{x}^{3}}} \cdot \frac{(2 \cdot \sigma_{x}^{2})^{3/2}\sqrt{\pi}}{1/2}$$

$$= \frac{1}{2} ld(2\pi\sigma_{x}^{2}) + \frac{1}{2} \cdot \frac{\ln e}{\ln 2} = \frac{1}{2} ld(2\pi\sigma_{x}^{2})$$

Capacity of Time discrete AWGN, D-AWGN

The Entropy of the input:

$$H(\xi_x) = \frac{1}{2} ld(2\pi e \sigma_x^2)$$

Because y(iT) = x(iT) + n(iT) and ξ_x and $\overline{\xi_n}$ are independent with

$$G(\mu_x = 0, \sigma_x^2 = P_x)$$
 and $G(\mu_n = 0, \sigma_n^2 = \frac{N_0}{2})$

respectively, therefore the output ξ_y follows also $G(\mu_y = 0, \sigma_y^2 = \sigma_x^2 + \sigma_n^2)$

Capacity of Time discrete AWGN, D-AWGN:

$$C_{D-AWG} = \max_{f_x(x)} [H(\xi_y) - H(\xi_y | \xi_x)] = \max_{f_x(x)} [H(\xi_y = \xi_x + \xi_n) - H(\xi_n)]$$

Recap: C_{AWGN} is maximal, if the input Gaussian

$$C_{D-AWG} = H(\xi_y = \xi_x + \xi_n) - H(\xi_n) = \frac{1}{2} ld(2\pi e[P_x + \sigma_n^2]) - \frac{1}{2} ld(2\pi e\sigma_n^2) = C_{D-AW} = \frac{1}{2} ld \frac{2\pi e[P_x + \sigma_n^2]}{2\pi e\sigma_n^2} = \frac{1}{2} ld \left(1 + \frac{P_x}{\sigma_n^2}\right) \left[\frac{bit}{channel use}\right]$$

Recap: average input power P_{χ} [Watt], noise power spectral density $\sigma_n^2 = N_0/2$ [Watt/Hz] => P_{χ}/σ_n^2 [bit/sec]

Capacity of Time continuous, Bandlimited AWGN

$$x(t) \xrightarrow{n(t)} y(t) = x(t) + n(t)$$

$$C_{AWGN} = \lim_{T \to \infty} \max_{f_x(x)} \frac{1}{T} \tilde{I}(\xi_x; \xi_y)$$

- Duration of communication: *T*
- Spectral Bandwidth of ξ_x : *B*
- Recap: Shannon's sampling theorem: $T_s \leq 1/2B$
- Representing time continuous signals with their samples:

$$\succ x(t) \leftrightarrow \overline{X} = [X_1, X_2, \dots, X_K]$$

 $\succ y(t) \leftrightarrow \overline{Y} = [Y_1, Y_2, \dots, Y_K]$

 $\succ n(t) \leftrightarrow \overline{N} = [N_1, N_2, \dots, N_K]$

Where (by sampling at the Nyquist rate): $K \cdot T_s = T \Rightarrow K = T/T_s = 2BT$

Limit of average input power:

$$P_{av} = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} E\{x^{2}(t)\} dt = \lim_{T \to \infty} \frac{1}{T} \sum_{i=1}^{K} E\{x_{i}^{2}\} \stackrel{WS}{\longleftrightarrow} \lim_{T \to \infty} \frac{K \cdot \sigma_{x}^{2}}{T} = \lim_{T \to \infty} \frac{2BT \sigma_{x}^{2}}{T} = 2B \sigma_{x}^{2}$$

Capacity of Time continuous, Bandlimited AWGN

Limit of average input power:

$$P_{av} = 2B\sigma_x^2 \Longrightarrow \sigma_x^2 = P_{av}/2B$$

Capacity:

$$\begin{aligned} C_{AWGN} &= \lim_{T \to \infty} \frac{1}{T} \max_{f_x(x)} \tilde{I}(\xi_x; \xi_y) = \lim_{T \to \infty} \frac{1}{T} \max_{f_x(x)} \left[H(\xi_y = \xi_x + \xi_n) - H(\xi_n) \right] = \\ &= \lim_{T \to \infty} \frac{1}{T} \max_{f_x(x)} \sum_{i=1}^{K} \left[H(Y_i = X_i + N_i) - H(N_i) \right] = \lim_{T \to \infty} \frac{1}{T} \sum_{i=1}^{K} \max_{f_x(x)} \left[H(Y_i = X_i + N_i) - H(N_i) \right] = \\ &= \lim_{T \to \infty} \frac{1}{T} \cdot K \cdot \frac{1}{2} ld \left(1 + \frac{\sigma_x^2}{\sigma_n^2} \right) = \lim_{T \to \infty} \frac{2BT}{2T} \cdot ld \left(1 + \frac{P_{av}}{2B\sigma_n^2} \right) = B \cdot ld \left(1 + \frac{P_{av}}{2B\sigma_n^2} \right) \end{aligned}$$

Recap: Power Spectral Density constant $\sigma_n^2 = N_0/2$

- average input power: P_{av}
- noise power: $2B\sigma_n^2 = B \cdot N_0$

Signal to Noise Ratio, $SNR = \frac{P_{av}}{BN_0}$

Capacity of time continuous, Bandlimited AWGN with power constrain P_{av}

$$C_{AWGN} = B \cdot ld \left(1 + \frac{P_{av}}{BN_0} \right) \left[\frac{bit}{sec} \right]$$

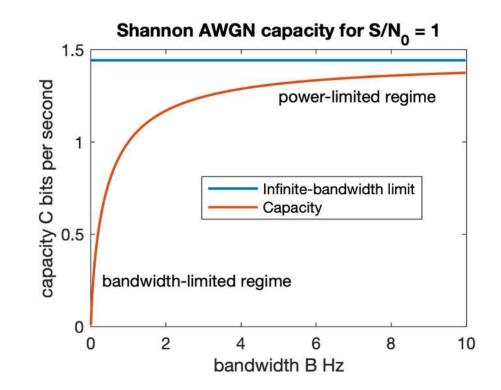
Capacity of bandlimited, power constrained AWGN

Capacity limits:

- $C_{AWGN} \uparrow$ when $P_{av} \uparrow$ and B constant or
- C_{AWGN} \uparrow when P_{av} constant, and B \uparrow Or both

$$C_{\infty} = \lim_{B \to \infty} C_{AWGN} = \lim_{B \to \infty} B \cdot ld \left(1 + \frac{P_{av}}{BN_0} \right) = \frac{P_{av}}{N_0} \cdot ld \ e = \frac{P_{av}}{N_0 \cdot ln2} \quad \left[\frac{bit}{sec} \right]$$

1/ln2=1,4426950408...

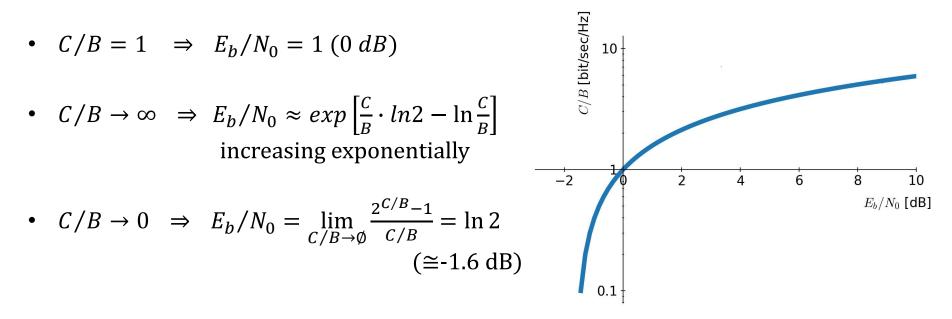


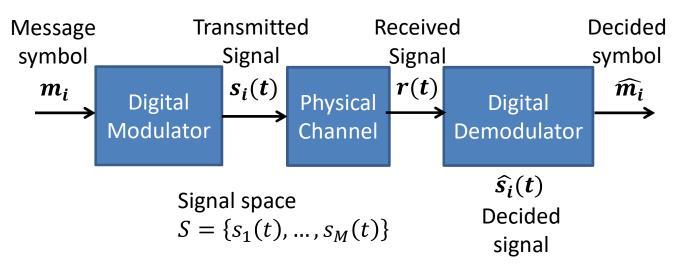
Shannon's Channel Capacity Limit

Bandlimited, Power Constrained AWGN

- Normalized channel capacity: *C*/*B* [bit/sec/Hz], [Shannon/sec/Hz]
- Bit energy: *E_b* [Joule]
- Constrained average input power: $P_{av} = E_b \cdot C$ [Watt] [Joule/sec]
- Signal to Noise Ratio, $SNR = \frac{P_{av}}{BN_0} = \frac{C \cdot E_b}{B \cdot N_0} \Rightarrow \text{ bit-SNR} = \frac{E_b}{N_0}, SNR/\text{bit/sec/Hz}$

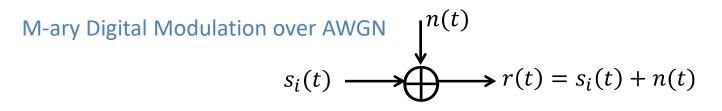
Recap: $C_{AWGN} = B \cdot ld \left(1 + \frac{P_{av}}{BN_0} \right) \left[\frac{bit}{sec} \right]$ $C/B = ld \left(1 + \frac{P_{av}}{BN_0} \right) \stackrel{2^{\wedge}}{\Rightarrow} 2^{C/B} = 1 + \frac{E_b \cdot C}{B \cdot N_0} \Rightarrow \frac{E_b}{N_0} = \frac{2^{C/B} - 1}{C/B}$





M-ary Digital Modulation

- Set of possible messages: $\mathcal{M} = \{m_1, \dots, m_M\}$
- Message symbol duration: *T_s*
- a-priori probability distribution of messages: $P = \{p_1 = p(m_1), \dots, p_M = p(m_M)\}$
- Set of Digital Signals: $S = \{s_1(t), ..., s_M(t)\}$



Definition of

M-ary Digital Signal set:
$$S = \{s_1(t), ..., s_M(t)\}$$

• Finite set of different signals, M different waveforms:

$$s_i(t) \neq s_j(t) \ \forall \, i,j \ i \neq j$$

• Finite signal duration *T_s*:

$$s_i(t) \equiv 0 \quad \forall t < 0 \text{ and } t \ge T_s \quad \forall i$$

• Finite signal energy E_i :

$$E_i = \int_{t=0}^{T_s} s_i^2(t) dt \le E_{max} < \infty \quad \forall i$$

Modulation dimension, Dimension of M-ary Digital Signal set D:

• If the signals of the set are orthogonal, then D=M

$$\int_{t=0}^{T_s} s_i(t) \cdot s_j(t) dt = \begin{cases} 0 & \forall i \neq j \\ E_i & i = j \end{cases}$$

- Else: non-orthogonal signal set: D<M
 - Gram–Schmidt process for orthonormalising a set

Gram–Schmidt process for orthonormalising a set

• Project an M-ary signal set to a D<M dimensional signal space

 $S = \{s_1(t), \ldots, s_M(t)\} \rightarrow \Phi = \{\varphi_1(t), \ldots, \varphi_D(t)\}$

- Basis functions of a D dimensional signal space ${\cal \Phi}$
 - Orthogonal and normalized functions

$$\int_{t=0}^{I_s} \varphi_i(t) \cdot \varphi_j(t) \, dt = \begin{cases} 0 & \forall i \neq j \\ 1 & i = j \end{cases}$$

Steps of Gram–Schmidt process

- a) Normalization of the first digital signal of the set S
- b) Calculate the projection of the second (next) digital signal into $\varphi_1(t)$ (already defined part of Φ)
- c) Define the second (next) basis function as the normalized orthogonal component of the second (next) digital signal
- d) Repeat b)-c) until the projection of all digital signal of the set are processed

Gram–Schmidt process for orthonormalising a set

$$\varphi_1(t) = \frac{s_1(t)}{\sqrt{E_1}} \to \int_{t=0}^{T_s} \varphi_1^2(t) dt = 1 \to s_1(t) = \sqrt{E_1} \cdot \varphi_1(t) = s_{11} \cdot \varphi_1(t)$$

$$s_{21} = \int_{t=0}^{T_s} s_2(t) \cdot \varphi_1(t) \, dt$$

c)

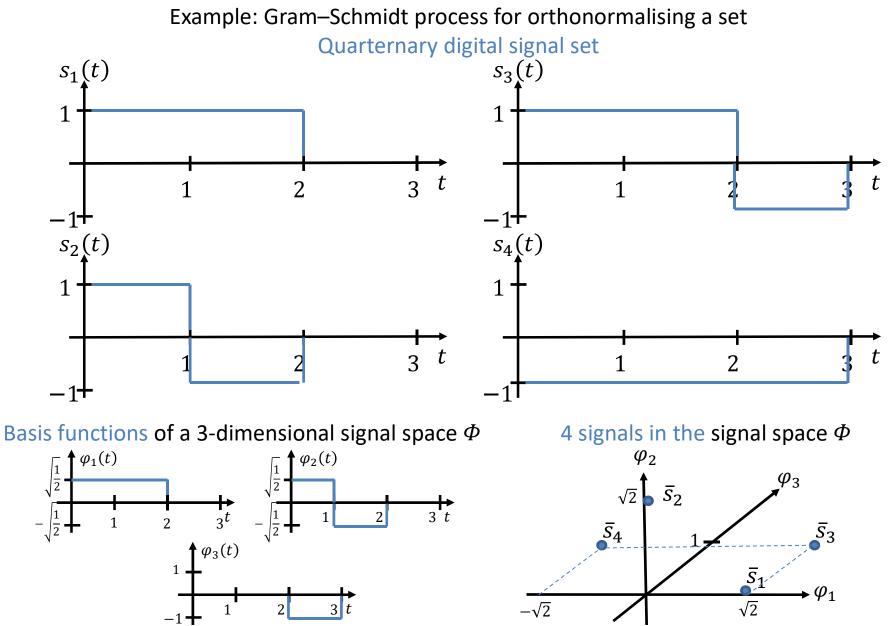
b)

$$\phi_{2}(t) = s_{2}(t) - s_{21} \cdot \varphi_{1}(t) \to \varphi_{2}(t) = \frac{\phi_{2}(t)}{\sqrt{\int_{t=0}^{T_{s}} \phi_{2}^{2}(t)dt}} \to s_{2}(t) = s_{21} \cdot \varphi_{1}(t) + s_{22} \cdot \varphi_{2}(t)$$

d) In general $s_i(t) \rightarrow \Phi$

$$s_{ik} = \int_{t=0}^{T_s} s_i(t) \cdot \varphi_k(t) dt$$

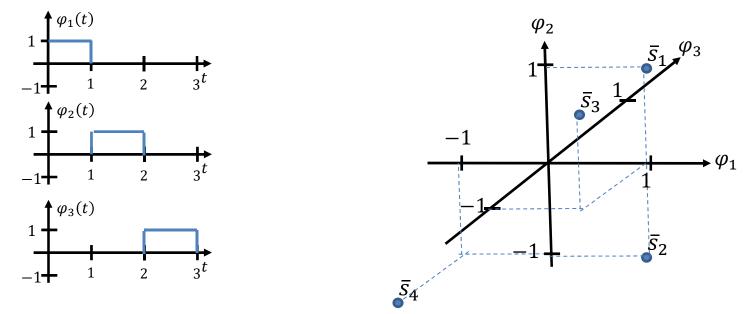
$$\phi_j(t) = s_i(t) - \sum_{k=1}^{j-1} s_{ik} \cdot \varphi_k(t) \rightarrow \varphi_j(t) = \frac{\phi_j(t)}{\sqrt{\int_{t=0}^{T_s} \phi_j^2(t) dt}}$$



Example: Heuristic orthonormal basic functions

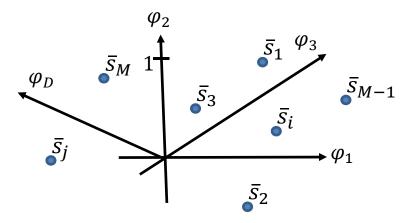
Basis functions of a 3-dimensional signal space Φ

4 signals in the signal space Φ



Representation of a D dimensional, M-ary digital signal set in Signal Vector Space $\boldsymbol{\Phi}$

$$S = \{s_1(t), \dots, s_M(t)\} \leftrightarrow \overline{S} = \{\overline{s}_1, \dots, \overline{s}_M\}$$
$$s_i(t) = \sum_{k=1}^{D} s_{ik} \cdot \varphi_k(t)$$
$$s_i(t) \leftrightarrow \overline{s}_i = [s_{i1}, \dots, s_{iD}]$$



D dimensional, M-ary Signal Vectors

• Signal energy $E_i \equiv |\bar{s}_i|^2$:

$$\begin{split} E_i &= \int\limits_{t=0}^{T_s} s_i^2(t) dt = \int\limits_{t=0}^{T_s} \left[\sum\limits_{k=1}^{D} s_{ik} \cdot \varphi_k(t) \right]^2 dt \stackrel{orthgonal}{\cong} \int\limits_{t=0}^{T_s} \sum\limits_{k=1}^{D} s_{ik}^2 \cdot \varphi_k^2(t) dt = \\ &= \sum\limits_{k=1}^{D} s_{ik}^2 \cdot \int\limits_{t=0}^{T_s} \varphi_k^2(t) dt \stackrel{normalised}{\cong} \sum\limits_{k=1}^{D} s_{ik}^2 = |\bar{s}_i|^2 \end{split}$$

Where $|\bar{s}_i|^2$ is the square of the absolute value (length) of the signal vector \bar{s}_i

• Correlation of time synchronic digital signals $R_{s_i s_j}(\tau = 0) \equiv \bar{s}_i \cdot \bar{s}_j$:

$$R_{s_i s_j}(\tau = 0) = \int_{t=0}^{T_s} s_i(t) \cdot s_j(t) dt = \int_{t=0}^{T_s} \left(\sum_{k=1}^{D} s_{ik} \cdot \varphi_k(t) \right) \cdot \left(\sum_{k=1}^{D} s_{jk} \cdot \varphi_k(t) \right) dt =$$
$$= \sum_{k=1}^{D} s_{ik} \cdot s_{jk} = \bar{s}_i \cdot \bar{s}_j$$

Where $\bar{s}_i \cdot \bar{s}_j$ is the scalar product of the vectors

Vectors in signal space Φ

Signals, noise and received signal in case of AWGN

$$s_i(t) \leftrightarrow \bar{s}_i \longrightarrow r(t) = s_i(t) + n(t) \leftrightarrow \bar{r} = \bar{s}_i + \bar{n}$$

