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System overview
Modulation and Physical Channel
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Capacity of the Physical Channel
• Until now: Investigation of time and value discrete channel 

 e.g. BSC, abstraction/model of real channels 
• Now: Time and value continuous channel

 because thermal noise is always present in physical systems
Entropy of continuous valued stochastic process (WSS, with  first order distribution) 

Remark: Channel capacity = Amount of information can be transmitted

Discrete Channel, Continuous Channel
X and Y are discrete RVs and are continuous stochastic processes

with and first order distribution  

Shannon’s Definition: Channel capacity
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AWGN Channel
Additive White Gaussian Noise: AWGN

• Additive:

x(t) y(t)=x(t)+n(t)

n(t)

• White constant Power Spectral Density, Auto-Correlation function Dirac:

h – Planck constant
k – Boltzmann constant

– ca. 19

∗

• Gaussian: 

 



Capacity of Time discrete AWGN,  D-AWGN

( ) ( )

It can be proved, that is maximal, if the input Gaussian 

 

Let the average power of the input (valid for ergodic process)

→

The Entropy of the input:



The Entropy of the input:
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Capacity of Time discrete AWGN,  D-AWGN



The Entropy of the input:

Because and and are independent with

and 

respectively, therefore the output follows also 

Capacity of Time discrete AWGN,  D-AWGN:

( ) ( )

Recap: is maximal, if the input Gaussian 

Recap: average input power [Watt], noise power spectral density [Watt/Hz] 
=>  [bit/sec]

Capacity of Time discrete AWGN,  D-AWGN
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Limit of average input power:

→ → → →

Capacity of Time continuous, Bandlimited AWGN



Capacity of Time continuous, Bandlimited AWGN
Limit of average input power:

         

Capacity:
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Power Spectral Density constant 
• average input power: 
• noise power: 

Capacity of time continuous, Bandlimited AWGN with power constrain 



Capacity of bandlimited, power constrained  AWGN

•

•

→ →

1/ln2=1,4426950408…



Shannon’s Channel Capacity Limit
Bandlimited, Power Constrained  AWGN
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• Constrained average input power: 
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Digital Modulation
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M-ary Digital Modulation
• Set of possible messages: 

• Message symbol duration: 

• a-priori probability distribution of messages: 

• Set of Digital Signals: 

M-ary Digital Modulation over AWGN



Digital Modulation
Definition of 

M-ary Digital Signal set: 

• Finite set of different signals, M different waveforms:

• Finite signal duration 

• Finite signal energy :

Modulation dimension, Dimension of M-ary Digital Signal set D:

• If the signals of the set are orthogonal, then D=M

• Else: non-orthogonal signal set: D<M
 Gram–Schmidt process for orthonormalising a set



Digital Modulation
Gram–Schmidt process for orthonormalising a set

• Project an M-ary signal set to a D<M dimensional signal space

  

• Basis functions of a D dimensional signal space 
 Orthogonal and normalized functions

Steps of Gram–Schmidt process 
a) Normalization of the first digital signal of the set S

b) Calculate the projection of the second (next) digital signal into  (already 
defined part of )

c) Define the second (next) basis function as the normalized orthogonal component 
of the second (next) digital signal

d) Repeat b)-c) until the projection of all digital signal of the set are processed



Gram–Schmidt process for orthonormalising a set
a)
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c)

 
 

d) In general 

 
 



Digital Modulation
Example: Gram–Schmidt process for orthonormalising a set

Quarternary digital signal set
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Digital Modulation
Example: Heuristic orthonormal basic functions
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Representation of a D dimensional, M-ary digital signal set in Signal Vector Space
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D dimensional, M-ary Signal Vectors
• Signal energy :

Where is the square of the absolute value (length) of the signal vector 

• Correlation of time synchronic digital signals :

Where is the scalar product of the vectors



Vectors in signal space
Signals, noise and received signal in case of AWGN
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Signal Vector Space
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