Úrkommunikáció Space Communication 2023/8.

Galois field, $\operatorname{GF}\left(q=p^{m}\right)$

Arithmetic operations over prime-power-size $\mathrm{GF}\left(\mathrm{q}=\mathrm{p}^{m}\right)$ Galois field:
The elements of the field (symbols, not numbers as usual):

$$
G F(q)=\left\{0,1,2, \ldots, p^{m}-1\right\}
$$

Representation of Elements:

- m dimensional p-ary vectors:
$\{\underbrace{00 \cdots 0}_{\mathrm{m}}, \underbrace{00 \cdots 1}_{\mathrm{m}}, \cdots, \underbrace{(p-2)(p-1) \cdots(p-1)}_{\mathrm{m}} \underbrace{(p-1)(p-1) \cdots(p-1)}_{\mathrm{m}}\}$
Null-element, Unit-element,, other elements
Example $G F\left(2^{2}=4\right)=\left\{\begin{array}{llll}00 & 01 & 10 & 11\end{array}\right\}$
- P-ary polynomials of maximum degree $=m-1$:
$\left\{\begin{array}{l}\underbrace{0,}_{0 \text { degree }} \quad 1, \quad \cdots, \quad(p-1), \\ \underbrace{x, \quad x+1, \quad \cdots, \quad x+(p-1), \quad 2 x, \cdots}_{\text {2. degree }} \quad(p-1) x+(p-1),\end{array}\right.$
$\underbrace{x^{2}, \quad x^{2}+x, \quad x^{2}+1, x^{2}+x+1, \cdots, \quad(p-1) x^{2}+(p-1) x+(p-1), \cdots,}_{\text {1. degree }}$,
Example $G F\left(2^{2}=4\right)=\left\{\begin{array}{llll}0 & 1 & x & x+1\end{array}\right\}$

Galois field, $\operatorname{GF}\left(q=p^{m}\right)$

Arithmetic operations over prime-power-size $\mathrm{GF}\left(\mathrm{q}=p^{m}\right)$ Galois field:
The elements of the field (symbols, not numbers as usual):

$$
G F(q)=\left\{0,1,2, \ldots, p^{m}-1\right\}
$$

The operations applied over $\mathrm{GF}(\mathrm{q}=\mathrm{p})$ are not appropriate:
Example $G F\left(2^{2}=4\right)=\{0,1,2,3\} ; 1+1(\bmod 4)=2=3+3(\bmod 4)$
Operations, $a, b \in G F\left(q=p^{m}\right)$:
Addition $\mathrm{a} \oplus \mathrm{b}$

- Sum of the values modulo p at each coordinates of the vectors

Example $G F\left(2^{2}=4\right)=\left\{\begin{array}{llll}00 & 01 & 10 & 11\end{array}\right\} ; 10 \oplus 11=01$

- Sum of the coefficients modulo p of the members same degree

Example $G F\left(2^{2}=4\right)=\left\{\begin{array}{llll}0 & 1 & x & x+1\end{array}\right\} ; \mathrm{x} \oplus \mathrm{x}+1=1$
Multiplication $\mathrm{a}(\mathrm{x}) * \mathrm{~b}(\mathrm{x})$

$$
c(x)=a(x) \cdot b(x) \operatorname{Mod} p(x)
$$

Product of the polynomials modulo $\mathrm{p}(\mathrm{x})$ irreducible polynomial degree of m , and coefficients modulo p. Irreducible polynomial can't be product of polynomials lower degree.

Example $G F\left(2^{2}=4\right)=\left\{\begin{array}{llll}0 & 1 & x & x+1\end{array}\right\} ; \mathrm{p}(\mathrm{x})=x^{2}+x+1$;

$$
\mathrm{x} *(\mathrm{x}+1) \bmod \mathrm{p}(\mathrm{x})=x^{2}+x \bmod p(x)=1 \cdot p(x)+1 \bmod p(x)=1
$$

Galois field, $\operatorname{GF}\left(q=p^{m}\right)$

Example: Arithmetic operations over prime-power-size $\mathrm{GF}\left(\mathrm{q}=p^{m}\right)$ Galois field:

$$
\left.\left.\begin{array}{l}
\qquad G F\left(2^{2}=4\right)=\{0,1,2,3
\end{array}\right\}=\begin{array}{lccc}
00 & 01 & 10 & 11
\end{array}\right\}=\left\{\begin{array}{cccc}
0 & 1 & x & x+1
\end{array}\right\}
$$

$a, b \in G F\left(q=p^{m}\right)$

Addition $\mathrm{a} \oplus \mathrm{b}$
modulo p at each coordinates

$\mathrm{a} \oplus \mathrm{b}$		00	01	10	11
00	0	0	1	2	3
01	1	1	0	3	2
10	2	2	3	0	1
11	3	3	2	1	0

Multiplication $\mathrm{a}(\mathrm{x}) * \mathrm{~b}(\mathrm{x})$
$c(x)=a(x) \cdot b(x) \bmod \mathrm{p}(\mathrm{x})=x^{2}+x+1$

$\mathrm{a}(\mathrm{x}) * \mathrm{~b}(\mathrm{x})$	0	1	x	$\mathrm{x}+1$	
		0	1	2	3
0	0	0	0	0	0
1	1	0	1	2	3
x	2	0	2	3	1
$x+1$	3	0	3	1	2

Example: Systematic, MDS, Hamming
$\left(N=q+1=5, K=q-1=3, q=2^{2}=4\right)$ code

$$
G F(4)=\{0,1,2,3\} ; \quad t_{\text {corr }}=1 ;
$$

Hamming bound, perfect: $1+N \cdot(q-1)=1+(q+1) \cdot(q-1)=q^{2}=q^{N-K}$;

$\mathrm{a} \oplus \mathrm{b}$	00	01	10	11	
		0	1	2	3
00	0	0	1	2	3
01	1	1	0	3	2
10	2	2	3	0	1
11	3	3	2	1	0

$a(x) *$ $b(x)$			0	1	x
	0	1	2	3	
0	0	0	0	0	0
1	1	0	1	2	3
x	2	0	2	3	1
$x+1$	3	0	3	1	2

$$
\begin{aligned}
& \bar{u}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] \\
& \bar{c}=\bar{u} \cdot \overline{\bar{G}}=\left[\begin{array}{lllll}
1 & 2 & 3 & 0 & 0
\end{array}\right] \\
& \bar{e}=\left[\begin{array}{lllll}
0 & 3 & 0 & 0 & 0
\end{array}\right] \\
& \bar{v}=\bar{c}+\bar{e}=\left[\begin{array}{lllll}
1 & 1 & 3 & 0 & 0
\end{array}\right] \\
& \begin{array}{c}
\bar{s}^{T}=\overline{\bar{H}} \cdot \bar{v}^{T}=e_{i} \cdot \bar{h}_{i}^{T}=\left[\begin{array}{l}
e_{i} \cdot h_{1, i} \\
e_{i} \cdot h_{2, i}
\end{array}\right]=\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right] ; \quad e_{i}=3 ; \quad \frac{\bar{s}^{T}}{3}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\bar{h}_{i}^{T} ; i=2 \\
\hat{\bar{e}}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0
\end{array}\right]
\end{array} \\
& \begin{array}{c}
\hat{e}=\left[\begin{array}{llll}
0 & 3 & 0 & 0
\end{array}\right] \\
\hat{\bar{c}}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array} 0\right. \\
\hat{\bar{u}}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]
\end{array}
\end{aligned}
$$

Example: Systematic, MDS, Hamming
$\left(N=q+1=5, K=q-1=3, q=2^{2}=4\right)$ code

$a \oplus b$	00	01	10	11	
00	0	0	1	2	3
01	1	1	0	3	2
10	2	2	3	0	1
11	3	3	2	1	0

$a(x) * b(x)$	0	1	x	$x+1$	
		0	1	2	3
0	0	0	0	0	0
1	1	0	1	2	3
x	2	0	2	3	1
$x+1$	3	0	3	1	2

$$
\left.\left.\left.\begin{array}{ccc}
& \bar{u}=[&
\end{array}\right], \quad\right] \quad \begin{array}{clll}
\bar{c}=\bar{u} \cdot \overline{\bar{G}}=\left[\begin{array}{llll}
& &
\end{array}\right] \\
\bar{e}=\left[\begin{array}{llll}
0 & 0 & 0 & 0
\end{array}\right. &
\end{array}\right]
$$

$$
\begin{aligned}
& \bar{s}^{T}=\overline{\bar{H}} \cdot \bar{v}^{T}=e_{i} \cdot \bar{h}_{i}^{T}=\left[\begin{array}{l}
e_{i} \cdot h_{1, i} \\
e_{i} \cdot h_{2, i}
\end{array}\right]=[] ; \quad e_{i}=; \quad \frac{\bar{s}^{T}}{e_{i}}=[]=\bar{h}_{i}^{T} ; i= \\
&=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\hat{\bar{c}}=\left[\begin{array}{ll}
\\
\hat{\bar{u}}=[&]
\end{array}\right.
$$

Cyclic block codes

Definition: The cyclic shift of every valid code vector results in also valid code
If $\overline{c_{i}}=\left[c_{1}, c_{2}, \ldots, c_{N-1}, c_{N}\right]$ valid, then $\overline{c_{j}}=\left[c_{N}, c_{1}, \ldots, c_{N-2}, c_{N-1}\right]$ also.
Remark: Heuristically we already designed a cyclic code

Cyklic (N,K,q) block codes

Representing code words with code polynomials (instead of vectors)
Remark: coefficients of the polynomials are elements of and operations over GF(q)
The N dimensional \bar{c} vector corresponds to $c(x)$ polynomial, $\max \{\operatorname{deg}(c(x))\}=N-1$: Indexing from 0 ,

$$
\bar{c}=\left[c_{0}, c_{1}, \ldots, c_{N-2}, c_{N-1}\right] \Leftrightarrow c(x)=c_{0} \cdot x^{0}+c_{1} \cdot x^{1}+\ldots+c_{N-2} \cdot x^{N-2}+c_{N-1} \cdot x^{N-1}
$$

Cyclic shift:

- Shift with one position: multiply with x

$$
x \cdot c(x)=c_{0} \cdot x^{1}+c_{1} \cdot x^{2}+\ldots+c_{N-2} \cdot x^{N-1}+c_{N-1} \cdot x^{N}
$$

- Adding zero:

$$
\begin{gathered}
x \cdot c(x)=c_{0} \cdot x^{1}+c_{1} \cdot x^{2}+\ldots+c_{N-2} \cdot x^{N-1}+c_{N-1} \cdot x^{N} \pm c_{N-1} \\
x \cdot c(x)=c_{N-1}+c_{0} \cdot x^{1}+c_{1} \cdot x^{2}+\ldots+c_{N-2} \cdot x^{N-1}+c_{N-1} \cdot\left(x^{N}-1\right)
\end{gathered}
$$

- Make it cyclic: \bmod with $\left(x^{N}-1\right)$ polynomial

$$
x \cdot c(x) \bmod \left(x^{N}-1\right)=c_{N-1}+c_{0} \cdot x^{1}+c_{1} \cdot x^{2}+\ldots+c_{N-2} \cdot x^{N-1}
$$

Deriving other code polynomials in general: If $\mathrm{c}(\mathrm{x})$ is a valid code, then $c_{i}(x)$ is also a valid code polynomial of degree $\max \left\{\operatorname{deg}\left(c_{i}(x)\right)\right\}=N-1$

$$
c_{i}(x)=x^{i} \cdot c(x) \bmod \left(x^{N}-1\right)
$$

Generating Cyclic (N,K,q) block codes

(One possible method - there are also others):
Theorem:
Any $\mathrm{g}(\mathrm{x})$ polynomial of degree $\mathrm{N}-\mathrm{K}$ that divides the $\left(x^{N}-1\right)$ polynomial is appropriate for code generation.

$$
\left(x^{N}-1\right)=g(x) \cdot h(x) \Longleftrightarrow\left(x^{N}-1\right) \bmod g(x)=0
$$

Generator polynomial, $\operatorname{deg}(g(x))=N-K$:

$$
g(x)=g_{0}+g_{1} \cdot x^{1}+\ldots+g_{N-K} \cdot x^{N-K}
$$

Parity check polynomial, $\operatorname{deg}(h(x))=K$:

$$
h(x)=h_{0}+h_{1} \cdot x^{1}+\ldots+h_{K} \cdot x^{K}
$$

Representing the message words of K message symbols (message vectors) with polynomials:
Message polynomial, $\max \{\operatorname{deg}(u(x))\}=K-1$:

$$
u(x)=u_{0}+u_{1} \cdot x^{1}+\ldots+u_{K-1} \cdot x^{K-1}
$$

Generating codes: a code polynomial corresponds to a message polynomial applying the generator polynomial:

$$
c_{i}(x)=u_{i}(x) \cdot g(x)
$$

Generating Cyclic (N,K,q) block codes

Proof that $g(x)=g_{0}+g_{1} \cdot x^{1}+\ldots+g_{N-K} \cdot x^{N-K} \quad$ appropriate generator
A valid message polynomial: $u_{0}=u_{1}=\cdots=u_{K-2}=0, u_{K-1}=1$:

$$
u(x)=x^{K-1}
$$

The corresponding code polynomial generated by $\mathrm{g}(\mathrm{x})$ according the theorem:

$$
c(x)=u(x) \cdot g(x)=g_{0} \cdot x^{K-1}+g_{1} \cdot x^{K}+g_{2} \cdot x^{K+1}+\ldots+g_{N-K} \cdot x^{N-1}
$$

Cyclic shift:

$$
\begin{gathered}
x \cdot c(x)=g_{0} \cdot x^{K}+g_{1} \cdot x^{K+1}+\cdots+g_{N-K-1} \cdot x^{N-1}+g_{N-K} \cdot x^{N} \quad \pm g_{N-K}= \\
=g_{N-K}+g_{0} \cdot x^{K}+g_{1} \cdot x^{K+1}+\cdots+g_{N-K-1} \cdot x^{N-1}+g_{N-K} \cdot\left(x^{N}-1\right) \\
c_{1}(x)=x \cdot c(x) \bmod \left(x^{N}-1\right)=g_{N-K}+g_{0} \cdot x^{K}+g_{1} \cdot x^{K+1}+\cdots+g_{N-K-1} \cdot x^{N-1}= \\
=\underbrace{x^{K} \cdot g(x)}_{g(x) \text { divides }}-\underbrace{g_{N-K} \cdot\left(x^{N}-1\right)}_{g(x) \text { divides }}=x^{K} \cdot g(x) \bmod \left(x^{N}-1\right)
\end{gathered}
$$

Therefore $c_{1}(x)$ is also generated by $g(x)$:

$$
c_{1}(x)=u_{1}(x) \cdot g(x)
$$

Cyclic Redundancy Check, CRC

Generating codes:

$$
c(x)=u(x) \cdot x^{N-K}-\underbrace{\left[\left(u(x) \cdot x^{N-K}\right) \bmod g(x)\right]}_{r(x)}
$$

The message polynomial $u(x)$ shifted to the right with $N-K$ positions and then subtracting the residuum polynomial $\mathrm{r}(\mathrm{x})$ of the division with $\mathrm{g}(\mathrm{x})$

$$
\operatorname{deg} r(x) \leq N-K-1, \text { because } \operatorname{deg} g(x)=N-K
$$

Representing with vectors:
$\bar{u}=\left[\begin{array}{lllll}u_{0} & u_{1} & u_{2} & \ldots & u_{K-1}\end{array}\right]$
$\bar{c}=\left[\begin{array}{lll}\underbrace{c_{0}}_{r(x)} \begin{array}{lllll} & c_{N-K-1}\end{array} & \underbrace{}_{\text {Systematic }}\end{array}\right]$
Because $g(x)$ divides CRC codes, therefore CRC codes are generated by $g(x)$. CRC codes are systematic.

Cyclic binary Hamming (N,K,q)

Example: parameters of the block code: $(N=7, K=4, q=2)$
Choosing a generator polynomial:

$$
\begin{aligned}
& \operatorname{deg} g(x)=N-K \text { and }\left(x^{N}-1\right) \bmod g(\mathrm{x})=0 \\
& \left(x^{7}-1\right)=(x+1) \cdot\left(x^{3}+x^{2}+1\right) \cdot\left(x^{3}+x^{1}+1\right) \\
& g(x)=\left(x^{3}+x^{2}+1\right) \text { or }\left(x^{3}+x^{1}+1\right)
\end{aligned}
$$

Generating codes for the message $u(x)$:

$$
c(x)=u(x) \cdot g(x)
$$

Processing of error with $\mathrm{h}(\mathrm{x})$ parity check polynomial:

$$
\begin{gathered}
\operatorname{deg} h(x)=K \text { and }\left(x^{N}-1\right) \bmod h(x)=0 \\
h(x)=(x+1)\left(x^{3}+x^{1}+1\right) \text { or }(x+1)\left(x^{3}+x^{2}+1\right)
\end{gathered}
$$

A valid code polynomial multiplied with $h(x)$ results 0

$$
\begin{gathered}
c(x) \cdot h(x)=\underbrace{u(x) \cdot g(x)}_{c(x)} \cdot h(x)=u(x) \cdot \underbrace{g(x) \cdot h(x)}_{\left(x^{N}-1\right)}=u(x) \cdot\left(x^{N}-1\right) \\
c(x) \cdot h(x) \bmod \left(x^{N}-1\right)=0
\end{gathered}
$$

Cyclic binary Hamming (N,K,q)

In the case of ONE error represented by $\mathrm{e}(\mathrm{x})$ error polynomial :

$$
v \begin{gathered}
v(x)=c(x)+e(x) \\
v(x) \cdot h(x) \bmod \left(x^{N}-1\right)=\underbrace{=c(x) h(x) \bmod \left(x^{N}-1\right)}_{\equiv 0}+\underbrace{e(x) h(x) \bmod \left(x^{N}-1\right)}_{\neq 0}
\end{gathered}
$$

Detection of error:

$$
v(x) \cdot h(x) \bmod \left(x^{N}-1\right) \neq 0
$$

ONE binary error at position $\mathrm{i}(\mathrm{i}=0,1,2, \ldots, \mathrm{~N}-1)$:

$$
e(x)=x^{i}
$$

Correction of error

- $\mathrm{h}(\mathrm{x})$ will be cyclically shifted by i positions to the right through multiplication with $\mathrm{e}(\mathrm{x})$
- Decoder checks in which cyclic shift of $\mathrm{h}(\mathrm{x})$ match with $v(x) \cdot h(x) \bmod \left(x^{N}-1\right)$
=> error position $\mathrm{i}=>\hat{e}(x)$ decided error polynomial
- decided code polynomial $\hat{c}(x)=v(x)-\hat{e}(x)$
- decided message polynomial $\hat{c}(x)=\gg \hat{u}(x)$

Simple step if systematic, otherwise:

$$
\hat{u}(x)=\hat{c}(x) / g(x)
$$

Example: Cyclic binary Hamming ($\mathrm{N}, \mathrm{K}, \mathrm{q}$)

Parameters: ($\mathrm{N}=7, \mathrm{~K}=4, \mathrm{q}=2$)

$$
\left(x^{7}-1\right)=(x+1) \cdot\left(x^{3}+x^{2}+1\right) \cdot\left(x^{3}+x^{1}+1\right)
$$

Choosing generator polynomial:

$$
g(x)=\left(1+x^{2}+x^{3}\right)
$$

Generating code for the message: $\quad u(x)=1+x^{3}$

$$
c(x)=u(x) \cdot g(x)=1+x^{2}+x^{3}+x^{3}+x^{5}+x^{6}=1+x^{2}+x^{5}+x^{6}
$$

Determining $\mathrm{h}(\mathrm{x})$ parity check polynomial:

$$
h(x)=(x+1)\left(x^{3}+x^{1}+1\right)=1+x^{2}+x^{3}+x^{4}
$$

ONE binary error at position $\mathrm{i}=3$:

$$
e(x)=x^{3}
$$

Received polynomial:

$$
v(x)=c(x)+e(x)=1+x^{2}+x^{3}+x^{5}+x^{6}
$$

Correction of error:

$$
v(x) \cdot h(x) \bmod \left(x^{N}-1\right)=1+x^{3}+x^{5}+x^{6}
$$

$1+x^{3}+x^{5}+x^{6}$ binary polynomial \Leftrightarrow binary vector $\quad\left[\begin{array}{lllllll}1 & 0 & 0 & 1 & 0 & 1 & 1\end{array}\right]$
$1+x^{2}+x^{3}+x^{4} \mathrm{~h}(\mathrm{x})$ polynomial \Leftrightarrow binary vector: $\quad\left[\begin{array}{lllllll}1 & 0 & 1 & 1 & 1 & 0 & 0\end{array}\right]$
$\left[\begin{array}{llllllll}1 & 0 & 0 & 1 & 0 & 1 & 1\end{array}\right]$
\Rightarrow Error position $\mathrm{i}=3 \Rightarrow \hat{e}(x)=x^{3}$ decided error polynomial

$$
\hat{c}(x)=v(x)-\hat{e}(x)
$$

Polynomials over GF(q)

Remark: The elements of the field (symbols, not numbers as usual):

$$
G F(q)=\{0,1,2, \ldots, q-1\} q=p \text { or } p^{m}
$$

Arithmetic operations with field elements of GF(q) as usual.

Def.: $c(x)$ is a polynomial over $\mathrm{GF}(\mathrm{q})$ with $\operatorname{deg} c(x)=N-1$ if

$$
\begin{aligned}
c(x)= & c_{0} \cdot x^{0}+c_{1} \cdot x^{1}+\ldots+c_{N-2} \cdot x^{N-2}+c_{N-1} \cdot x^{N-1} \\
& c_{i} \epsilon G F(q), \quad i=0 \cdots N-1, c_{N-1} \neq 0 .
\end{aligned}
$$

Addition of polynomials:

$$
c(x)=a(x)+b(x), c_{i}=a_{i}+b_{i}, \quad \operatorname{deg} c(x)=\max \{\operatorname{deg} a(x), \operatorname{deg} b(x)\}
$$

e.g. for $\mathrm{q}=\mathrm{p}: c_{i}=a_{i}+b_{i}(\bmod q)$

Product of polynomials:

$$
c(x)=a(x) \cdot b(x), \quad \begin{aligned}
& \operatorname{deg} c(x)=\operatorname{deg} a(x)+\operatorname{deg} b(x) \\
& c_{i}=\sum_{j=0}^{\min \{i, \operatorname{deg} a(x)\}} a_{j} \cdot b_{i-j}
\end{aligned}
$$

e.g. for $\mathrm{q}=\mathrm{p}: c_{i}=\sum_{j=0}^{\min \{i, \operatorname{deg} a(x)\}} a_{j} \cdot b_{i-j}(\bmod q)$

Example over $\mathrm{GF}(\mathrm{q}=2): a(x)=1+x$ and $b(x)=1+x+x^{3}$

$$
a(x)+b(x)=x^{3} \text { and } a(x) \cdot b(x)=1+x^{2}+x^{3}+x^{4}
$$

Polynomials over GF(q)

Division (Euclidean) of polynomials:
For $a(x)$ and $b(x) \neq 0$ polynomials $\exists q(x)$ quotient and $r(x)$ residuum polynomials

$$
a(x)=q(x) \cdot b(x)+r(x) ; \operatorname{deg} r(x)<\operatorname{deg} b(x)
$$

$b(x)$ is a divisor polynomial of $a(x)$ if $r(x)=0$, and $r(x)=a(x) \bmod b(x)$ is the residuum

Def. Root of a polynomial: $c \in G F(q)$, is a root of $a(x)$ if $a(c)=0$.
Theorem: If c is a root, then $a(x)=b(x) \cdot(x-c)$
Proof: $\quad a(x)=b(x) \cdot(x-c)+r(x)$; deg $r(x)=0$, because deg $(x-c)=1$
$0=a(c)=b(c) \cdot(c-c)+r=r$
Theorem: An $\mathrm{a}(\mathrm{x})$ polynomial of deg $\mathrm{a}(\mathrm{x})=\mathrm{k}$ have maximum k roots.
Proof:
$a(x)=b(x) \cdot(x-c) \Rightarrow \operatorname{deg} b(x)=\operatorname{deg} a(x)-1$
$b(x)=\dot{b}(x) \cdot(x-\dot{c}) \Rightarrow \operatorname{deg} \dot{b}(x)=\operatorname{deg} b(x)-1$
$\dot{b}(x)=\ddot{b}(x) \cdot(x-\ddot{c}) \Rightarrow \operatorname{deg} \ddot{b}(x)=\operatorname{deg} \dot{b}(x)-1$
etc.

Reed-Solomon code

Reed-Solomon codes are non-binary, linear, maximum distance separable (MDS) block codes over GF(q) capable to correct more than one errors, Parameters ($\mathrm{N}, \mathrm{K}, \mathrm{q}, \alpha$)

Three equivalent code generation methods:
Method A: Coefficients of the code polynomial calculated from the message polynomial at different elements of the GF(q).
In general, let $\alpha_{0}, \alpha_{1}, \cdots, \alpha_{N-1}$ different $\exists G F(q), N \leq q$
and the message polynomial $u(x), \max \{\operatorname{deg} u(x)\}=K-1$ over $G F(q)$

$$
u(x)=u_{0}+u_{1} \cdot x^{1}+\ldots+u_{K-1} \cdot x^{K-1}
$$

then the corresponding code polynomial $\mathrm{c}(\mathrm{x}), \max \{\operatorname{deg} c(x)\}=N-1$ over GF(q):

$$
c(x)=c_{0}+c_{1} \cdot x^{1}+\ldots+c_{N-1} \cdot x^{N-1}
$$

With $c_{0}=u\left(\alpha_{0}\right), c_{1}=u\left(\alpha_{1}\right), c_{2}=u\left(\alpha_{2}\right), \cdots, c_{N-1}=u\left(\alpha_{N-1}\right)$
Theorem: Reed-Solomon codes are linear
Proof: For method A the corresponding generator matrix if using $\bar{c}=\bar{u} \cdot \overline{\bar{G}}$

$$
\overline{\bar{G}}=\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
\alpha_{0} & \alpha_{1} & \alpha_{2} & & \alpha_{N-2} \alpha_{N-1} \\
\alpha_{0}^{2} & \alpha_{1}^{2} & \alpha_{2}^{2} & \vdots & \vdots \alpha_{N-2}^{2} \alpha_{N-1}^{2} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\alpha_{0}^{K-1} & \alpha_{1}^{K-1} & \alpha_{2}^{K-1} & \alpha_{N-2}^{K-1} \alpha_{N-1}^{K-1}
\end{array}\right]
$$

Reed-Solomon code

Theorem: Reed-Solomon codes are MDS codes
Remarks:
MDS code $M=q^{N-d_{\text {min }}+1}$ or equivalently: $K=N-d_{\min }+1$ or $d_{\min }=N-K+1$
Code weight: $w(\vec{C})=\min _{\overline{c_{i} \exists \vec{C}} \backslash \overline{0}}\left\{\sum_{n=1}^{N} \chi\left(c_{i_{n}} \neq 0\right)\right\}=d_{\text {min }}$ for linear codes
Proof: $w(\vec{C})=N-\langle 0$ coordinates of $\bar{c}\rangle=N-\langle$ roots of $u(x)\rangle \geq N-(K-1)$
and because Singleton: $w(\vec{C})=d_{\min } \leq N-K+1 \xrightarrow{\text { yields }} d_{\min }=N-K+1$

- Therefore: $t_{\text {det }}=d_{\min }-1=N-K$, and $t_{\text {corr }}=\left\lfloor\frac{d_{\text {min }}-1}{2}\right\rfloor=\left\lfloor\frac{N-K}{2}\right\rfloor$

Method B: $\bar{c}=\bar{u} \cdot \overline{\bar{G}}$, let α of order $m \exists G F(q), N \leq m$ and $\alpha_{0}=1, \alpha_{1}=\alpha, \alpha_{2}=\alpha^{2}, \cdots, \alpha_{N-1}=\alpha^{N-1}$ different $\exists G F(q)$, then applying Method A becomes:

$$
\overline{\bar{G}}=\left[\begin{array}{cccccc}
1 & 1 & 1 & & 1 & 1 \\
1 & \alpha & \alpha^{2} & & \alpha^{N-2} & \alpha^{N-1} \\
1 & \alpha^{2} & \alpha^{4} & \vdots & \alpha^{2(N-2)} & \alpha^{2(N-1)} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
1 & \alpha^{K-1} & \alpha^{2(K-1)} & & \alpha^{(K-1)(N-2)} & \alpha^{(K-1)(N-1)}
\end{array}\right]
$$

Reed-Solomon code

Method C: let α of order $m \exists G F(q), N \leq m$
$\operatorname{Everyc}(x)=c_{0}+c_{1} \cdot x^{1}+\ldots+c_{n-1} \cdot x^{n-1} \quad$ is valid, if α^{i} are roots $\forall i=1,2, \cdots, N-K$

$$
\vec{C}=\left\{c(x) ; \text { if } c\left(\alpha^{i}\right)=0, \forall i=1,2, \cdots, N-K\right\}
$$

or equivalently:

$$
\stackrel{\rightharpoonup}{C}=\left\{\bar{c} ; \text { if } \overline{\bar{H}} \cdot \bar{c}^{T}=\overline{0}^{T}\right\}
$$

where

$$
\overline{\bar{H}}=\left[\begin{array}{cccccc}
1 & \alpha^{1} & \alpha^{2 \cdot 1} & & \alpha^{(N-2) \cdot 1} & \alpha^{(N-1) \cdot 1} \\
1 & \alpha^{2} & \alpha^{2 \cdot 2} & & \alpha^{(N-2) \cdot 2} & \alpha^{(N-1) \cdot 2} \\
1 & \alpha^{3} & \alpha^{2 \cdot 3} & \vdots & \alpha^{(N-2) \cdot 3} & \alpha^{(N-1) \cdot 3} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
1 & \alpha^{N-K} & \alpha^{2 \cdot(N-K)} & & \alpha^{(N-2) \cdot(N-K)} & \alpha^{(N-1) \cdot(N-K)}
\end{array}\right]
$$

Decoding of Reed-Solomon codes

Using the matrix $\overline{\bar{H}}$ and the received vector \bar{v} the decoder could calculate the so called syndrome vector:

$$
\bar{s}^{T}=\overline{\bar{H}} \cdot \bar{v}^{T}=\overline{\bar{H}} \cdot[\bar{c}+\bar{e}]^{T}=\underbrace{\overline{\bar{H}} \cdot \bar{c}^{T}}_{\overline{0}}+\overline{\bar{H}} \cdot \bar{e}^{T}=\overline{\bar{H}} \cdot \bar{e}^{T}
$$

Decision in the case of $\bar{S}^{T}=\overline{0}^{T}$:

- Trivial: $\bar{v}=\overline{c_{i}}$
- Unsolvable: $\bar{v}=\overline{c_{j}} \neq \overline{c_{i}}$ that we sent

Remark: Error processing in general
In the case of $\bar{S}^{T} \neq \overline{0}^{T}$ an equation system of N-K equations should be solved for $2 \cdot t_{\text {corr }}$ unknowns (each errors have two attributes: position and value)

$$
\bar{s}^{T}=\overline{\bar{H}} \cdot \bar{e}^{T}
$$

The parity check matrix and the error vector:

$$
\overline{\bar{H}}=\left[\begin{array}{llll}
\bar{h}_{1}^{T} & \bar{h}_{2}^{T} & \ldots & \bar{h}_{N}^{T}
\end{array}\right]
$$

The column vectors should be different and excluding $\overline{0}^{T}$, because they localizing the errors.

$$
\bar{e}=\left[0,0, \ldots, e_{i}, \ldots, e_{j}, \ldots, 0, \ldots, 0\right]
$$

Decoding of Reed-Solomon codes

In the case of $\bar{s}^{T} \neq \overline{0}^{T}$ an equation system of $N-K$ equations should be solved for $2 \cdot t_{\text {corr }}$ unknowns (each errors have two attributes: position and value)

\[

\]

The column vectors are different and excluding $\overline{0}^{T}$, therefore localizing the errors. The syndrome vector:

$$
\bar{s}^{T}=\sum_{n} e_{n} \cdot \bar{h}_{n}^{T}=\left[\begin{array}{c}
s_{1} \\
s_{2} \\
\vdots \\
s_{N-K}
\end{array}\right]
$$

Or the corresponding non-linear equation system of $N-K$ equations:

$$
\begin{gathered}
s_{1}=e_{i} \cdot h_{i}^{1}+e_{j} \cdot h_{j}^{1}+e_{k} \cdot h_{k}^{1}+\cdots \\
s_{2}=e_{i} \cdot h_{i}^{2}+e_{j} \cdot h_{j}^{2}+e_{k} \cdot h_{k}^{2}+\cdots \\
s_{N-K}=e_{i} \cdot h_{i}^{(N-K)}+e_{j} \cdot h_{j}^{(N-K)}+e_{k} \cdot h_{k}^{(N-K)}+\cdots
\end{gathered}
$$

