Űrkommunikáció Space Communication 2023/8.

Galois field, $GF(q = p^m)$

Arithmetic operations over <u>prime-power</u>-size $GF(q=p^m)$ Galois field:

The elements of the field (symbols, not numbers as usual):

$$GF(q) = \{0, 1, 2, \dots, p^m - 1\}$$

Representation of Elements:

• m dimensional p-ary vectors:

$$\left\{\underbrace{0\ 0\ \cdots\ 0}_{m}, \underbrace{0\ 0\ \cdots\ 1}_{m}, \cdots, \underbrace{(p-2)\ (p-1)\ \cdots\ (p-1)}_{m} \quad \underbrace{(p-1)\ (p-1)\ \cdots\ (p-1)}_{m} \right\}$$

Null-element, Unit-element,, other elements
Example $GF(2^2 = 4) = \{00\ 01\ 10\ 11\}$

• P-ary polynomials of maximum degree = m-1:

$$\begin{cases}
\underbrace{0, 1, \cdots, (p-1),}_{0 \text{ degree}}, \underbrace{x, x+1, \cdots, x+(p-1), 2x, \cdots (p-1)x+(p-1),}_{1 \text{ degree}}, \\
\underbrace{x^{2}, x^{2}+x, x^{2}+1, x^{2}+x+1, \cdots, (p-1)x^{2}+(p-1)x+(p-1), \cdots,}_{2 \text{ degree}}, \\
\underbrace{x^{m-1}, x^{m-1}+1, \cdots, (p-1)x^{m-1}+(p-1)x^{m-2}+\cdots+(p-1)x+(p-1)}_{(m-1)\text{-th degree}} \\
\text{Example } GF(2^{2}=4) = \{0 \ 1 \ x \ x+1\}
\end{cases}$$

Galois field, $GF(q = p^m)$

Arithmetic operations over <u>prime-power</u>-size $GF(q=p^m)$ Galois field: The elements of the field (symbols, not numbers as usual):

$$GF(q) = \{0, 1, 2, \dots, p^m - 1\}$$

The operations applied over GF(q=p) are not appropriate: Example $GF(2^2 = 4) = \{0, 1, 2, 3\}$; 1+1 (mod 4)=2=3+3 (mod 4)

Operations, $a, b \in GF(q = p^m)$: Addition a \bigoplus b

• Sum of the values modulo p at each coordinates of the vectors Example $GF(2^2 = 4) = \{00 \quad 01 \quad 10 \quad 11\}; 10 \bigoplus 11 = 01$

• Sum of the coefficients modulo p of the members same degree Example $GF(2^2 = 4) = \{0 \ 1 \ x \ x + 1\}; x \bigoplus x+1 = 1$

Multiplication a(x) * b(x)

$$c(x) = a(x) \cdot b(x) \mod p(x)$$

Product of the polynomials modulo p(x) irreducible polynomial degree of m, and coefficients modulo p. Irreducible polynomial can't be product of polynomials lower degree.

Example
$$GF(2^2 = 4) = \{0 \ 1 \ x \ x + 1\}; p(x)=x^2 + x + 1;$$

x * (x+1) mod p(x) = $x^2 + x \mod p(x) = 1 \cdot p(x) + 1 \mod p(x) = 1$

Galois field, $GF(q = p^m)$

Example: Arithmetic operations over <u>prime-power</u>-size $GF(q=p^m)$ Galois field:

 $GF(2^2 = 4) = \{0, 1, 2, 3\} = \{00 \ 01 \ 10 \ 11\} = \{0 \ 1 \ x \ x + 1\}$ Field elements by symbols vectors polynomials

 $a,b \in GF(q=p^m)$

Addition a \bigoplus b modulo p at each coordinates

Multiplication a(x) * b(x)		
$c(x) = a(x) \cdot b(x) \mod p(x) = x^2 \cdot c(x)$	+x + 1	

a 🖯	∋b	00	01	10	11
		0	1	2	3
00	0	0	1	2	3
01	1	1	0	3	2
10	2	2	3	0	1
11	11 3		2	1	0

a(x) *	∗ b(x)	0	1	х	x+1
		0	1	2	3
0	0	0	0	0	0
1	1	0	1	2	3
x	2	0	2	3	1
x+1	3	0	3	1	2

Example: Systematic, MDS, Hamming $(N=q+1=5,K=q-1=3,q=2^2 = 4)$ code

 $GF(4) = \{0, 1, 2, 3\}; t_{corr} = 1;$ Hamming bound, perfect: $1 + N \cdot (q - 1) = 1 + (q + 1) \cdot (q - 1) = q^2 = q^{N-K};$

								<u>۱</u> .	0	1	.,	1
a {	∋b	00	01	10	11	$\overline{\overline{H}} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 2 & 2 & 0 & 1 \end{bmatrix}$	a(x b(a(x) * b(x)		T	Х	X+1
		0	1	2	3			,	0	1	2	3
00	0	0	1	2	3	$= \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 2 \end{bmatrix}$	0	0	0	0	0	0
01	1	1	0	3	2	$G = \begin{bmatrix} 0 & 1 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1 & 3 \end{bmatrix}$	1	1	0	1	2	3
10	2	2	3	0	1		x	2	0	2	3	1
11	3	3	2	1	0		x+1	3	0	3	1	2

$$\bar{u} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

$$\bar{c} = \bar{u} \cdot \bar{\bar{G}} = \begin{bmatrix} 1 & 2 & 3 & 0 & 0 \end{bmatrix}$$

$$\bar{e} = \begin{bmatrix} 0 & 3 & 0 & 0 & 0 \end{bmatrix}$$

$$\bar{v} = \bar{c} + \bar{e} = \begin{bmatrix} 1 & 1 & 3 & 0 & 0 \end{bmatrix}$$

$$\bar{v} = \bar{c} + \bar{e} = \begin{bmatrix} 1 & 1 & 3 & 0 & 0 \end{bmatrix}$$

$$\bar{s}^{T} = \bar{H} \cdot \bar{v}^{T} = e_{i} \cdot \bar{h}_{i}^{T} = \begin{bmatrix} e_{i} \cdot h_{1,i} \\ e_{i} \cdot h_{2,i} \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}; \qquad e_{i} = 3; \quad \frac{\bar{s}^{T}}{3} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \bar{h}_{i}^{T}; \quad i=2$$

$$\hat{e} = \begin{bmatrix} 0 & 3 & 0 & 0 & 0 \\ \hat{c} = \begin{bmatrix} 1 & 2 & 3 & 0 & 0 \end{bmatrix}$$

$$\hat{u} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

Example: Systematic, MDS, Hamming $(N=q+1=5,K=q-1=3,q=2^2 = 4)$ code

a 🖯	∋b	00	01	10	11		a(x) >	∗ b(x)	0	1	x	x+1
		0	1	2	3	$\overline{\overline{H}} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 2 & 3 & 0 & 1 \end{bmatrix}$			0	1	2	3
00	0	0	1	2	3	F100111	0	0	0	0	0	0
01	1	1	0	3	2	$\bar{\bar{G}} = 0 \ 1 \ 0 \ 1 \ 2$	1	1	0	1	2	3
10	2	2	3	0	1	L0 0 1 1 3 J	x	2	0	2	3	1
					_		x+1	3	0	3	1	2
11	3	3	2	1	0							

$$\bar{s}^{T} = \bar{H} \cdot \bar{v}^{T} = e_{i} \cdot \bar{h}_{i}^{T} = \begin{bmatrix} e_{i} \cdot h_{1,i} \\ e_{i} \cdot h_{2,i} \end{bmatrix} = \begin{bmatrix} \\ \\ e_{i} \cdot h_{2,i} \end{bmatrix} = \begin{bmatrix} \\ \\ \\ e_{i} \cdot h_{2,i} \end{bmatrix} = \begin{bmatrix} \\ \\ \\ e_{i} - h_{i} \\ e_{i} \end{bmatrix} = \bar{h}_{i}^{T}; i = \begin{bmatrix} \\ \\ \\ e_{i} - h_{i} \\ e_{i} \end{bmatrix} = \begin{bmatrix} \\ \\ \\ e_{i} - h_{i} \\ e_{i} \end{bmatrix} = \begin{bmatrix} \\ \\ \\ e_{i} - h_{i} \\ e_{i} \end{bmatrix} = \begin{bmatrix} \\ \\ \\ e_{i} - h_{i} \\ e_{i} \end{bmatrix} = \begin{bmatrix} \\ \\ \\ e_{i} - h_{i} \\ e_{i} \end{bmatrix} = \begin{bmatrix} \\ \\ \\ e_{i} - h_{i} \\ e_{i} \end{bmatrix} = \begin{bmatrix} \\ \\ \\ e_{i} - h_{i} \\ e_{i} \end{bmatrix} = \begin{bmatrix} \\ \\ \\ e_{i} \\ e_{i} \\ e_{i} \end{bmatrix} = \begin{bmatrix} \\ \\ \\ e_{i} \\ e_{i} \\ e_{i} \end{bmatrix} = \begin{bmatrix} \\ \\ \\ e_{i} \\ e_{i} \\ e_{i} \end{bmatrix} = \begin{bmatrix} \\ \\ \\ e_{i} \\ e_{i} \\ e_{i} \end{bmatrix} = \begin{bmatrix} \\ \\ \\ e_{i} \\ e_{i} \\ e_{i} \\ e_{i} \end{bmatrix} = \begin{bmatrix} \\ \\ \\ e_{i} \\ e_{i} \\ e_{i} \\ e_{i} \\ e_{i} \\ e_{i} \end{bmatrix} = \begin{bmatrix} \\ \\ \\ e_{i} \\ e_{i$$

Cyclic block codes

Definition: The cyclic shift of every valid code vector results in also valid code

If
$$\overline{c_i} = [c_1, c_2, \dots, c_{N-1}, c_N]$$
 valid, then $\overline{c_j} = [c_N, c_1, \dots, c_{N-2}, c_{N-1}]$ also.

Remark: Heuristically we already designed a cyclic code

Cyklic (N,K,q) block codes

Representing code words with code polynomials (instead of vectors) Remark: coefficients of the polynomials are elements of and operations over GF(q)

The N dimensional \overline{c} vector corresponds to c(x) polynomial, max $\{ deg(c(x)) \} = N - 1$: Indexing from 0,

$$\bar{c} = [c_0, c_1, \dots, c_{N-2}, c_{N-1}] \Leftrightarrow c(x) = c_0 \cdot x^0 + c_1 \cdot x^1 + \dots + c_{N-2} \cdot x^{N-2} + c_{N-1} \cdot x^{N-1}$$

Cyclic shift:

• Shift with one position: multiply with x

$$x \cdot c(x) = c_0 \cdot x^1 + c_1 \cdot x^2 + \dots + c_{N-2} \cdot x^{N-1} + c_{N-1} \cdot x^N$$

• Adding zero:

$$x \cdot c(x) = c_0 \cdot x^1 + c_1 \cdot x^2 + \dots + c_{N-2} \cdot x^{N-1} + c_{N-1} \cdot x^N \pm c_{N-1}$$
$$x \cdot c(x) = c_{N-1} + c_0 \cdot x^1 + c_1 \cdot x^2 + \dots + c_{N-2} \cdot x^{N-1} + c_{N-1} \cdot (x^N - 1)$$

• Make it cyclic: *mod with* $(x^{N} - 1)$ polynomial $x \cdot c(x) \mod (x^{N} - 1) = c_{N-1} + c_{0} \cdot x^{1} + c_{1} \cdot x^{2} + ... + c_{N-2} \cdot x^{N-1}$

Deriving other code polynomials in general: If c(x) is a valid code, then $c_i(x)$ is also a valid code polynomial of degree max $\{ \deg(c_i(x)) \} = N - 1$

$$c_i(x) = x^i \cdot c(x) \bmod (x^N - 1)$$

Generating Cyclic (N,K,q) block codes

(One possible method – there are also others):

Theorem:

Any g(x) polynomial of degree N-K that divides the $(x^N - 1)$ polynomial is appropriate for code generation.

$$(x^N - 1) = g(x) \cdot h(x) \longleftrightarrow (x^N - 1) \bmod g(x) = 0$$

Generator polynomial, deg(g(x)) = N - K: $g(x) = g_0 + g_1 \cdot x^1 + \dots + g_{N-K} \cdot x^{N-K}$

Parity check polynomial, deg(h(x)) = K: $h(x) = h_0 + h_1 \cdot x^1 + \dots + h_K \cdot x^K$

Representing the message words of K message symbols (message vectors) with polynomials: Message polynomial, max $\{ deg(u(x)) \} = K - 1$: $u(x) = u_0 + u_1 \cdot x^1 + ... + u_{K-1} \cdot x^{K-1}$

Generating codes: a code polynomial corresponds to a message polynomial applying the generator polynomial:

$$c_i(x) = u_i(x) \cdot g(x)$$

Generating Cyclic (N,K,q) block codes

Proof that $g(x) = g_0 + g_1 \cdot x^1 + \dots + g_{N-K} \cdot x^{N-K}$ appropriate generator

A valid message polynomial: $u_0 = u_1 = \cdots = u_{K-2} = 0, u_{K-1} = 1$:

 $u(x) = x^{K-1}$

The corresponding code polynomial generated by g(x) according the theorem:

$$c(x) = u(x) \cdot g(x) = g_0 \cdot x^{K-1} + g_1 \cdot x^K + g_2 \cdot x^{K+1} + \dots + g_{N-K} \cdot x^{N-1}$$

Cyclic shift:

$$x \cdot c(x) = g_0 \cdot x^K + g_1 \cdot x^{K+1} + \dots + g_{N-K-1} \cdot x^{N-1} + g_{N-K} \cdot x^N \pm g_{N-K} = g_{N-K} + g_0 \cdot x^K + g_1 \cdot x^{K+1} + \dots + g_{N-K-1} \cdot x^{N-1} + g_{N-K} \cdot (x^N - 1)$$

$$c_{1}(x) = x \cdot c(x) \mod (x^{N} - 1) = g_{N-K} + g_{0} \cdot x^{K} + g_{1} \cdot x^{K+1} + \dots + g_{N-K-1} \cdot x^{N-1} = \sum_{\substack{x^{K} \cdot g(x) \\ g(x) \text{ divides}}} \underbrace{g_{N-K} \cdot (x^{N} - 1)}_{g(x) \text{ divides}} = x^{K} \cdot g(x) \mod (x^{N} - 1)$$

Therefore
$$c_1(x)$$
 is also generated by $g(x)$:
 $c_1(x) = u_1(x) \cdot g(x)$

Cyclic Redundancy Check, CRC

Generating codes:

$$c(x) = u(x) \cdot x^{N-K} - \underbrace{\left[(u(x) \cdot x^{N-K}) \mod g(x) \right]}_{r(x)}$$

The message polynomial u(x) shifted to the right with N-K positions and then subtracting the residuum polynomial r(x) of the division with g(x)

 $\deg r(x) \le N - K - 1$, because $\deg g(x) = N - K$

Representing with vectors:

$$\overline{c} = \begin{bmatrix} u_0 & u_1 & u_2 & \dots & u_{K-1} \end{bmatrix}$$

$$\overline{c} = \begin{bmatrix} \underbrace{c_0 & \cdots & c_{N-K-1}}_{r(x)} & \underbrace{c_{N-K} & c_{N-K+1} & \dots & c_{N-1}}_{Systematic} \end{bmatrix}$$

Because g(x) divides CRC codes, therefore CRC codes are generated by g(x). CRC codes are systematic.

Cyclic binary Hamming (N,K,q)

Example: parameters of the block code: (N=7, K=4, q=2)

Choosing a generator polynomial:

$$\deg g(x) = N - K \text{ and } (x^N - 1) \mod g(x) = 0$$

(x⁷ - 1) = (x + 1) \cdot (x³ + x² + 1) \cdot (x³ + x¹ + 1)
g(x) = (x³ + x² + 1) or (x³ + x¹ + 1)

Generating codes for the message u(x):

$$c(x) = u(x) \cdot g(x)$$

Processing of error with h(x) parity check polynomial: $\deg h(x) = K$ and $(x^N - 1) \mod h(x)=0$

$$h(x) = (x + 1)(x^3 + x^1 + 1)$$
 or $(x + 1)(x^3 + x^2 + 1)$

A valid code polynomial multiplied with h(x) results 0

$$c(x) \cdot h(x) = \underbrace{u(x) \cdot g(x)}_{c(x)} \cdot h(x) = u(x) \cdot \underbrace{g(x) \cdot h(x)}_{(x^{N}-1)} = u(x) \cdot (x^{N}-1)$$

$$c(x) \cdot h(x) \mod (x^N - 1) = 0$$

Cyclic binary Hamming (N,K,q)

In the case of ONE error represented by e(x) error polynomial :

$$v(x) = c(x) + e(x)$$

$$v(x) \cdot h(x) \mod(x^{N} - 1) = \underbrace{c(x)h(x) \mod(x^{N} - 1)}_{\equiv 0} + \underbrace{e(x)h(x) \mod(x^{N} - 1)}_{\neq 0}$$

Detection of error:

$$v(x) \cdot h(x) \ mod(x^N - 1) \neq 0$$

ONE binary error at position i (i=0, 1, 2, ..., N-1):

$$e(x) = x^i$$

Correction of error

- h(x) will be cyclically shifted by i positions to the right through multiplication with e(x)
- Decoder checks in which cyclic shift of h(x) match with $v(x) \cdot h(x) \mod(x^N 1)$ => error position i => $\hat{e}(x)$ decided error polynomial
- decided code polynomial $\hat{c}(x) = v(x) \hat{e}(x)$
- decided message polynomial $\hat{c}(x) \Rightarrow \hat{u}(x)$

Simple step if systematic, otherwise:

$$\hat{u}(x) = \hat{c}(x)/g(x)$$

Example: Cyclic binary Hamming (N,K,q)

Parameters: (N=7, K=4, q=2)

$$(x^7 - 1) = (x + 1) \cdot (x^3 + x^2 + 1) \cdot (x^3 + x^1 + 1)$$

Choosing generator polynomial:

$$g(x) = (1 + x^2 + x^3)$$

Generating code for the message: $u(x) = 1 + x^3$

$$c(x) = u(x) \cdot g(x) = 1 + x^{2} + x^{3} + x^{3} + x^{5} + x^{6} = 1 + x^{2} + x^{5} + x^{6}$$

Determining h(x) parity check polynomial:

$$h(x) = (x + 1)(x^3 + x^1 + 1) = 1 + x^2 + x^3 + x^4$$

ONE binary error at position i=3:

$$e(x) = x^3$$

Received polynomial:

$$v(x) = c(x) + e(x) = 1 + x^2 + x^3 + x^5 + x^6$$

Correction of error:

$$v(x) \cdot h(x) \mod (x^N - 1) = 1 + x^3 + x^5 + x^6$$

 $1 + x^{3} + x^{5} + x^{6} \text{ binary polynomial} \Leftrightarrow \text{ binary vector} \qquad \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$ $1 + x^{2} + x^{3} + x^{4} \text{ h(x) polynomial} \Leftrightarrow \text{ binary vector:} \qquad \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$

[1 0 0 1 0 1 1]

=> Error position i=3 => $\hat{e}(x) = x^3$ decided error polynomial $\hat{c}(x) = v(x) - \hat{e}(x)$

Polynomials over GF(q)

Remark: The elements of the field (symbols, not numbers as usual): $GF(q) = \{0, 1, 2, ..., q - 1\} q = p \text{ or } p^m$ Arithmetic operations with field elements of GF(q) as usual.

Def.: c(x) is a polynomial over GF(q) with deg c(x) = N - 1 if

$$\begin{split} c(x) &= c_0 \cdot x^0 + c_1 \cdot x^1 + \dots + c_{N-2} \cdot x^{N-2} + c_{N-1} \cdot x^{N-1} \\ c_i \epsilon GF(q), \qquad i = 0 \cdots N - 1, c_{N-1} \neq 0. \end{split}$$

Addition of polynomials:

 $c(x) = a(x) + b(x), c_i = a_i + b_i, \qquad \deg c(x) = max\{\deg a(x), \deg b(x)\}$ e.g. for q=p: $c_i = a_i + b_i \pmod{q}$

Product of polynomials:

$$c(x) = a(x) \cdot b(x), \qquad \deg c(x) = \deg a(x) + \deg b(x)$$
$$c_i = \sum_{j=0}^{\min\{i, \deg a(x)\}} a_j \cdot b_{i-j}$$
e.g. for q=p: $c_i = \sum_{j=0}^{\min\{i, \deg a(x)\}} a_j \cdot b_{i-j} \pmod{q}$

Example over GF(q=2):
$$a(x) = 1 + x$$
 and $b(x) = 1 + x + x^3$
 $a(x) + b(x) = x^3$ and $a(x) \cdot b(x) = 1 + x^2 + x^3 + x^4$

Polynomials over GF(q)

Division (Euclidean) of polynomials:

For a(x) and $b(x) \neq 0$ polynomials $\exists q(x)$ quotient and r(x) residuum polynomials

 $a(x) = q(x) \cdot b(x) + r(x); \deg r(x) < \deg b(x)$

b(x) is a divisor polynomial of a(x) if r(x)=0, and $r(x)=a(x) \mod b(x)$ is the residuum

Def. Root of a polynomial: $c \in GF(q)$, is a root of a(x) if a(c)=0.

Theorem: If c is a root, then $a(x)=b(x) \cdot (x-c)$ Proof: $a(x)=b(x) \cdot (x-c)+r(x)$; deg r(x)=0, because deg (x-c)=1 $0=a(c)=b(c) \cdot (c-c)+r=r$

Theorem: An a(x) polynomial of deg a(x)=k have maximum k roots. Proof: $a(x) = b(x) \cdot (x - c) \Rightarrow \deg b(x) = \deg a(x) - 1$ $b(x) = \dot{b}(x) \cdot (x - \dot{c}) \Rightarrow \deg \dot{b}(x) = \deg b(x) - 1$ $\dot{b}(x) = \ddot{b}(x) \cdot (x - \ddot{c}) \Rightarrow \deg \ddot{b}(x) = \deg \dot{b}(x) - 1$ etc.

Reed-Solomon code

Reed-Solomon codes are non-binary, linear, maximum distance separable (MDS) block codes over GF(q) capable to correct more than one errors, Parameters (N,K,q, α)

Three equivalent code generation methods:

Method A: Coefficients of the code polynomial calculated from the message polynomial at different elements of the GF(q).

In general, let $\alpha_0, \alpha_1, \dots, \alpha_{N-1}$ different $\exists GF(q), N \leq q$ and the message polynomial u(x), max $\{\deg u(x)\} = K - 1 \text{ over GF}(q)$ $u(x) = u_0 + u_1 \cdot x^1 + \dots + u_{K-1} \cdot x^{K-1}$

then the corresponding code polynomial c(x), max {deg c(x)} = N - 1 over GF(q): $c(x) = c_0 + c_1 \cdot x^1 + \dots + c_{N-1} \cdot x^{N-1}$

With $c_0 = u(\alpha_0)$, $c_1 = u(\alpha_1)$, $c_2 = u(\alpha_2)$, \cdots , $c_{N-1} = u(\alpha_{N-1})$

Theorem: Reed-Solomon codes are linear

Proof: For method A the corresponding generator matrix if using $\bar{c} = \bar{u} \cdot \bar{\bar{G}}$

$$\bar{\bar{G}} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ \alpha_0 & \alpha_1 & \alpha_2 & \alpha_{N-2}\alpha_{N-1} \\ \alpha_0^2 & \alpha_1^2 & \alpha_2^2 & \vdots & \vdots & \alpha_{N-2}^2\alpha_{N-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \alpha_0^{K-1}\alpha_1^{K-1}\alpha_2^{K-1} & \alpha_{N-2}^{K-1}\alpha_{N-1}^{K-1} \end{bmatrix}$$

Reed-Solomon code

Theorem: Reed-Solomon codes are MDS codes Remarks:

MDS code $M = q^{N-d_{min}+1}$ or equivalently: $K = N - d_{min} + 1$ or $d_{min} = N - K + 1$ Code weight: $w(\vec{C}) = \min_{\vec{c_i} \exists \vec{C} \setminus \vec{0}} \{\sum_{n=1}^{N} \chi (c_{i_n} \neq 0)\} = d_{min}$ for linear codes Proof: $w(\vec{C}) = N - \langle 0 \text{ coordinates of } \vec{c} \rangle = N - \langle \text{roots of } u(x) \rangle \ge N - (K - 1)$ and because Singleton: $w(\vec{C}) = d_{min} \le N - K + 1 \xrightarrow{\text{yields}} d_{min} = N - K + 1$

• Therefore:
$$t_{det} = d_{min} - 1 = N - K$$
, and $t_{corr} = \left\lfloor \frac{d_{min} - 1}{2} \right\rfloor = \left\lfloor \frac{N - K}{2} \right\rfloor$

Method B: $\bar{c} = \bar{u} \cdot \bar{\bar{G}}$, let α of order $m \exists GF(q), N \leq m$ and $\alpha_0 = 1, \alpha_1 = \alpha, \alpha_2 = \alpha^2, \dots, \alpha_{N-1} = \alpha^{N-1}$ different $\exists GF(q)$, then applying Method A becomes:

$$\bar{\bar{G}} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & \alpha & \alpha^2 & \alpha^{N-2} & \alpha^{N-1} \\ 1 & \alpha^2 & \alpha^4 & \vdots & \alpha^{2(N-2)} & \alpha^{2(N-1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \alpha^{K-1} & \alpha^{2(K-1)} & \alpha^{(K-1)(N-2)} & \alpha^{(K-1)(N-1)} \end{bmatrix}$$

Reed-Solomon code

Method C: let α of order $m \exists GF(q), N \leq m$

 $Every c(x) = c_0 + c_1 \cdot x^1 + \dots + c_{n-1} \cdot x^{n-1} \text{ is valid, if } \alpha^i \text{ are roots } \forall i = 1, 2, \dots, N-K$

$$\vec{C} = \{c(x); if \ c(\alpha^i) = 0, \forall i = 1, 2, \cdots, N - K\}$$

or equivalently:

$$\vec{C} = \left\{ \bar{c}; if \ \bar{\overline{H}} \cdot \bar{c}^T = \overline{0}^T \right\}$$

where

$$\overline{H} = \begin{bmatrix} 1 & \alpha^{1} & \alpha^{2 \cdot 1} & \alpha^{(N-2) \cdot 1} & \alpha^{(N-1) \cdot 1} \\ 1 & \alpha^{2} & \alpha^{2 \cdot 2} & \alpha^{(N-2) \cdot 2} & \alpha^{(N-1) \cdot 2} \\ 1 & \alpha^{3} & \alpha^{2 \cdot 3} & \vdots & \alpha^{(N-2) \cdot 3} & \alpha^{(N-1) \cdot 3} \\ \vdots & \vdots & \vdots & \alpha^{(N-2) \cdot (N-K)} & \alpha^{(N-1) \cdot (N-K)} \end{bmatrix}$$

Decoding of Reed-Solomon codes

Using the matrix \overline{H} and the received vector \overline{v} the decoder could calculate the so called syndrome vector:

$$\bar{s}^T = \overline{\bar{H}} \cdot \bar{v}^T = \overline{\bar{H}} \cdot [\bar{c} + \bar{e}]^T = \underbrace{\overline{\bar{H}} \cdot \bar{c}^T}_{\overline{\bar{0}}} + \overline{\bar{H}} \cdot \bar{e}^T = \overline{\bar{H}} \cdot \bar{e}^T$$

Decision in the case of $\bar{s}^T = \bar{0}^T$:

- Trivial: $\bar{v} = \bar{c_i}$
- Unsolvable: $\overline{v} = \overline{c_i} \neq \overline{c_i}$ that we sent

Remark: Error processing in general

In the case of $\bar{s}^T \neq \bar{0}^T$ an equation system of N-K equations should be solved for $2 \cdot t_{corr}$ unknowns (each errors have two attributes: position and value)

$$\bar{s}^T = \bar{\bar{H}} \cdot \bar{e}^T$$

The parity check matrix and the error vector:

 $\overline{H} = \begin{bmatrix} \overline{h}_1^T & \overline{h}_2^T & \dots & \overline{h}_N^T \end{bmatrix}$ The column vectors should be different and excluding $\overline{0}^T$, because they localizing the errors.

$$\bar{e} = \begin{bmatrix} 0, 0, \dots, e_i, \dots, e_j, \dots, 0, \dots, 0 \end{bmatrix}$$

Decoding of Reed-Solomon codes

In the case of $\bar{s}^T \neq \bar{0}^T$ an equation system of N-K equations should be solved for $2 \cdot t_{corr}$ unknowns (each errors have two attributes: position and value)

$$\bar{s}^{T} = \bar{H} \cdot \bar{e}^{T} \text{ where } \bar{e} = \begin{bmatrix} 0, 0, \dots, e_{i}, \dots, e_{j}, \dots, 0, \dots, 0 \end{bmatrix} \text{ and}$$

$$\bar{H} = \begin{bmatrix} \bar{h}_{1}^{T} & \bar{h}_{2}^{T} & \dots & \bar{h}_{N}^{T} \end{bmatrix} = \begin{bmatrix} 1 & \alpha^{1} & \alpha^{2 \cdot 1} & h_{i}^{1} & h_{j}^{1} & \alpha^{(N-1) \cdot 1} \\ 1 & \alpha^{2} & \alpha^{2 \cdot 2} & h_{i}^{2} & h_{j}^{2} & \alpha^{(N-1) \cdot 2} \\ 1 & \alpha^{3} & \alpha^{2 \cdot 3} & \vdots & h_{i}^{3} & \vdots & h_{j}^{3} & \vdots & \alpha^{(N-1) \cdot 3} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \alpha^{N-K} & \alpha^{2 \cdot (N-K)} & h_{i}^{(N-K)} & h_{j}^{(N-K)} & \alpha^{(N-1) \cdot (N-K)} \end{bmatrix}$$

The column vectors are different and excluding $\overline{0}^T$, therefore localizing the errors. The syndrome vector:

$$\bar{s}^T = \sum_n e_n \cdot \bar{h}_n^T = \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_{N-K} \end{bmatrix}$$

Or the corresponding non-linear equation system of N-K equations:

$$s_1 = e_i \cdot h_i^1 + e_j \cdot h_j^1 + e_k \cdot h_k^1 + \cdots$$

$$s_2 = e_i \cdot h_i^2 + e_j \cdot h_j^2 + e_k \cdot h_k^2 + \cdots$$

$$s_{N-K} = e_i \cdot h_i^{(N-K)} + e_j \cdot h_j^{(N-K)} + e_k \cdot h_k^{(N-K)} + \cdots$$