Űrkommunikáció
 Space Communication 2023/7.

Linear block codes
 Algebraic code construction; definitions

Linear vector space \vec{V} : The space is closed for linear operations (addition, multiplication).

$$
\bar{v}_{i}+\bar{v}_{j}=\overline{v_{k}} ; \quad \forall \overline{v_{i}}, \overline{v_{j}}, \overline{v_{k}} \in \vec{V}
$$

Code space \vec{C}, called Code: The valid code vectors are constituent parts of a linear subspace within a linear vector space.

$$
\forall i: \overline{c_{i}} \in \vec{C} \subset \vec{V}
$$

E.g. \quad Vectors yes, but \quad vectors not

Linear independent part of a space:
$\sum_{i} \overline{c_{i}} \neq \overline{0} ;$
E.g. every two but not three \bullet, except $\overline{0}$
$101+011=110$, de 101+011+110=000

Base of \vec{C} : A such set of linear independent \bar{g}_{i} vectors, of which ones linear combination (weighted sum, weighted with the message symbols) generates every valid code vectors.

Linear block codes Algebraic code construction; definitions

Base of \vec{C}; Base of a Code; Generator matrix $\overline{\bar{G}}$:

$$
\overline{c_{i}}=\sum_{k=1}^{K} u_{i_{k}} \cdot \overline{g_{k}}=\overline{u_{i}} \cdot\left[\begin{array}{c}
\overline{g_{1}} \\
\overline{g_{2}} \\
\vdots \\
\overline{g_{K}}
\end{array}\right]=\overline{u_{i}} \cdot \overline{\bar{G}}
$$

Basis vectors: \bar{g}_{i}; The Generator matrix $\overline{\bar{G}}$ is the column vector of the basis vectors.

Because the space should be closed we need such linear arithmetic operations that not points out from the finite vector space. SO we need a finite mathematical field.

Évariste Galois
Galois Field, GF(q), finite q number of elements (symbols).
The size of the field is q either a prime number or power of prime.

$$
\mathrm{GF}(q), q=p \text { or } p^{m}
$$

Galois Field, GF(q)

The elements of the field (symbols such as Arabic symbols for numbers):

$$
G F(q)=\{0,1,2, \ldots, q-1\}
$$

Arithmetic operations over prime-size $\mathrm{GF}(\mathrm{q}=\mathrm{p})$ Galois field:
Operations, $a, b \in G F(q)$:

Addition

$a \bigoplus b=a+b \bmod q$
Properties of operations:
Closed: $\quad \mathrm{a} \bigoplus \mathrm{b}=\mathrm{c} \in G F(q)$
Commutative: $\mathrm{a} \bigoplus \mathrm{b}=\mathrm{b} \bigoplus \mathrm{a}$
Associative: $(\mathrm{a} \oplus b) \oplus c=a \oplus(b \oplus c)$
\exists null-element, 0 : a $\bigoplus 0=\mathrm{a}$
Invers: $\quad a \bigoplus b=0 ; a=-b$

Multiplication

$\mathrm{a} * \mathrm{~b}=\mathrm{a} \cdot \mathrm{b} \bmod \mathrm{q}$
$\mathrm{a} * \mathrm{~b}=\mathrm{c} \in G F(q)$
$a * b=b * a$
distributive: $(a * b) * c=a *(b * c)$
\exists unit-element, 1: a * $1=a$
$a * b=1 ; a=1 / b$

The order of an element $\mathrm{a} \neq 0 \in G F(q)$ is the smallest x , which $\mathrm{a}^{x}=\underbrace{\mathrm{a} * \mathrm{a} * \cdots * \mathrm{a}}_{\mathrm{x}}=1$
Primitive element α, which order $\mathrm{x}=\mathrm{q}-1$, thus $\alpha^{q-1}=1$.
There exist at least one primitive element for every GF(q).

Examples for $\mathrm{GF}(\mathrm{q}=\mathrm{p})$

The elements of the field are the power of the primitive element

$$
G F(q)=\{0,1,2, \ldots, q-1\}=\left\{\alpha^{-\infty}, \alpha^{0}, \alpha^{1}, \alpha^{2}, \ldots, \alpha^{q-2}\right\}
$$

Remark: $\alpha^{q-1}=\alpha^{0}=1$
E.g. $G F(q=7)=\{0,1,2,3,4,5,6\}$

Is 2 a primitive element? $\alpha=2$?
$2^{-\infty}=0 ; \quad 2^{0}=1 ; \quad 2^{1}=2 ; \quad 2^{2}=4 ; \quad 2^{3}=1 ; \quad 2^{4}=2^{3} \cdot 2=2 ; \quad 2^{5}=4, \ldots \mathrm{NO}!$
$\alpha=3$?
$3^{-\infty}=0 ; \quad 3^{0}=1 ; \quad 3^{1}=3 ; \quad 3^{2}=2 ; \quad 3^{3}=6 ; \quad 3^{4}=4 ; \quad 3^{5}=5 \mathrm{YES}!$
Therefore:

$$
G F(q=7)=\left\{\alpha^{-\infty}, \alpha^{0}, \alpha^{1}, \alpha^{2}, \ldots, \alpha^{q-2}\right\}=\{0,1,3,2,6,4,5\}
$$

We already known $\mathrm{GF}(\mathrm{q}=2)$, that is the binary arithmetic: Sum of binary vectors
Modulo 2 addition of the coordinates:
$101+011=110$

Procedure of Code generation

- Define (N, K, q) parameter set for the required correction capability $t_{\text {corr }}=\left\lfloor\frac{d_{\text {min }}-1}{2}\right\rfloor$ according the construction rules.
- Appropriate choice of the basis vectors in the N dimensional space that constitutes the generator matrix $\overline{\bar{G}}$ with the size of $K x N$ to generate the valid code vectors of the Code \vec{C}
Defining the Base:

$$
\overline{\bar{G}}=\left[\begin{array}{c}
\overline{g_{1}} \\
g_{2} \\
\vdots \\
\overline{g_{K}}
\end{array}\right]=\left[\begin{array}{ccc}
g_{11} & g_{12} & g_{1 N} \\
g_{21} & g_{22} & \ldots \\
g_{2 N} \\
\vdots & \vdots & \vdots \\
g_{K 1} & \cdots \cdots & g_{K N}
\end{array}\right]
$$

Generating the code vectors:

$$
\overline{c_{i}}=\sum_{k=1}^{K} u_{i_{k}} \cdot \overline{g_{k}}=\overline{u_{i}} \cdot\left[\begin{array}{c}
\overline{g_{1}} \\
\overline{g_{2}} \\
\vdots \\
g_{K}
\end{array}\right]=\overline{u_{i}} \cdot \overline{\bar{G}}
$$

Systematic code; advantage by the 2 . step of decoding, because the code vector contains the message vector:

$$
\overline{\bar{G}}=\left[\begin{array}{llll}
\overline{P_{K, N-K-k}} & \vdots & \overline{\overline{I_{K, K}}} & \vdots \\
\overline{\overline{P_{K, k}}}
\end{array}\right]
$$

Example: Parity check code: ($\mathrm{N}=3, \mathrm{~K}=2, \mathrm{q}=2$)

Able to detect just one error: $d_{\min }=2, t_{\text {det }}<d_{\min }, t_{\text {det }}^{\max }, ~=d_{\min }-1=1$

Systematic, because contains the unity matrix;

$$
\overline{\bar{G}}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

Realization example

Non systematic, but by changing rows or columns could be systematic

Processing of errors

There exists such a Parity check matrix $\overline{\bar{H}}$, that $\overline{\bar{G}} \cdot \overline{\bar{H}}^{T}=\overline{\overline{0}}$
E.g. for systematic $\overline{\bar{G}}=\left[\begin{array}{c}\overline{I_{K, K}}\end{array} \vdots \quad \overline{\overline{P_{K, N-K}}}\right]$ generator matrix:

$$
\overline{\bar{H}}^{T}=\left[\begin{array}{c}
-\overline{\bar{P}}_{K, N-K} \\
\cdots \\
\overline{\bar{I}}_{N-K, N-K}
\end{array}\right] \stackrel{\text { transponat }}{ } \overline{\bar{H}}=\left[-\overline{\bar{P}}_{K, N-K}^{T}=-\overline{\bar{P}}_{N-K, K} \quad: \quad \vdots \quad \overline{\bar{I}}_{N-K, N-K}\right]
$$

Appropriate because:

By transmitting through BSC or more generally through DMC (discrete memoryless channel):

$$
\bar{v}=\bar{c}+\bar{e}
$$

Using the parity check matrix $\overline{\bar{H}}$ and the received vector \bar{v} the decoder could calculate the so called syndrome vector:

$$
\bar{s}^{T}=\overline{\bar{H}} \cdot \bar{v}^{T}=\overline{\bar{H}} \cdot[\bar{c}+\bar{e}]^{T}=\underbrace{\overline{\bar{H}} \cdot \bar{c}^{T}}_{\overline{\overline{0}}}+\overline{\bar{H}} \cdot \bar{e}^{T}=\overline{\bar{H}} \cdot \bar{e}^{T}
$$

Decision in the case of $\bar{S}^{T}=\overline{0}^{T}$:

- Trivial: $\bar{v}=\overline{c_{i}}$
- Unsolvable: $\bar{v}=\overline{c_{j}} \neq \overline{c_{i}}$ that we sent

Processing of errors

In the case of $\bar{s}^{T} \neq \overline{0}^{T}$ an equation system of $N-K$ equations should be solved for $2 \cdot t_{\text {corr }}$ unknowns (each errors have two attributes: position and value)

$$
\bar{s}^{T}=\overline{\bar{H}} \cdot \bar{e}^{T}
$$

The parity check matrix and the error vector:

$$
\overline{\bar{H}}=\left[\begin{array}{llll}
\bar{h}_{1}^{T} & \bar{h}_{2}^{T} & \ldots & \bar{h}_{N}^{T}
\end{array}\right]
$$

The column vectors should be different and excluding $\overline{0}^{T}$, because they localizing the errors.

$$
\bar{e}=\left[0,0, \ldots, e_{i}, \ldots, e_{j}, \ldots, 0, \ldots, 0\right]
$$

The syndrome vector:

$$
\begin{gathered}
\bar{s}^{T}=\sum_{n} e_{n} \cdot \bar{h}_{n}^{T}=\left[\begin{array}{c}
s_{1} \\
s_{2} \\
\vdots \\
s_{N-K}
\end{array}\right]=\left[\begin{array}{ccccc}
e_{i} \cdot \bar{h}_{i_{1}}^{T} & + & e_{j} \cdot \bar{h}_{j_{1}}^{T} & + & \cdots \\
e_{i} \cdot \bar{h}_{i_{2}}^{T} & + & e_{i} \cdot \bar{h}_{j_{2}}^{T} & + & \cdots \\
\vdots & \vdots & \vdots & & \\
e_{i} \cdot \bar{h}_{i_{N-K}}^{T} & + & e_{i} \cdot \bar{h}_{j_{N-K}}^{T} & + & \cdots
\end{array}\right] \\
s_{1}=e_{i} \cdot \bar{h}_{i_{1}}^{T}+e_{j} \cdot \bar{h}_{j_{1}}^{T}+e_{k} \cdot \bar{h}_{k_{1}}^{T}+\cdots \\
s_{2}=e_{i} \cdot \bar{h}_{i_{2}}^{T}+e_{j} \cdot \bar{h}_{j_{2}}^{T}+e_{k} \cdot \bar{h}_{k_{2}}^{T}+\cdots \\
s_{N-K}=e_{i} \cdot \bar{h}_{i_{N-K}}^{T}+e_{j} \cdot \bar{h}_{j_{N-K}}^{T}+e_{k} \cdot \bar{h}_{k_{N-K}}^{T}+\cdots
\end{gathered}
$$

Example: Binary Hamming $(7,4,2)$

Column in octal (e.g. 3=011)

$$
\begin{gathered}
\overline{\bar{H}}=\left[\begin{array}{ccccccc}
3 & 5 & 6 & 7 & 1 & 2 & 4 \\
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right] \\
\overline{\bar{G}}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right] \\
\text { Message vector }
\end{gathered}
$$

$$
\bar{u}=\left[\begin{array}{llll}
1 & 1 & 0 & 1
\end{array}\right]
$$

$$
\text { Code vector } \bar{c}=\bar{u} \cdot \overline{\bar{G}}=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right]
$$

$$
\left[u_{1}, u_{2}, u_{3}, u_{4}, p_{1}=u_{1}+u_{2}+u_{4}, p_{2}=u_{1}+u_{3}+u_{4}, p_{3}=u_{2}+u_{3}+u_{4}\right]
$$

Received vector (One error on BSC)
$\bar{e}=\left[\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$ Received vector (Two errors on BSC)

$$
\bar{e}=\left[\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$\bar{v}=\bar{c}+\bar{e}=\left[\begin{array}{lllllll}1 & 1 & 0 & 1 & 1 & 0 & 1\end{array}\right]$

$$
\bar{v}=\bar{c}+\bar{e}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

Error correction:
Error detection, parity check:

$$
\begin{aligned}
& \bar{s}^{T}=\overline{\bar{H}} \cdot \bar{v}^{T}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
& \hat{\bar{e}}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \hat{\bar{c}}=\left[\begin{array}{llllll}
1 & 1 & 0 & 1 & 1 & 0
\end{array}\right] \\
& \hat{\bar{u}}=\left[\begin{array}{llll}
1 & 1 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
p_{v 1} \neq v_{1}+v_{2}+v_{4}=0, p_{v 2}=0, p_{v 3}=1
$$

Example: Binary Hamming

$$
(N=7, K=4, q=2)
$$

$$
\left.\left.\begin{array}{c}
\overline{\bar{H}}=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right] \\
\overline{\bar{G}}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right] \\
\bar{u}=\left[\begin{array}{llll}
1 & 1 & 0 & 1
\end{array}\right] \\
\bar{c}=\bar{u} \cdot \overline{\bar{G}}=\left[\begin{array}{llllll}
1 & 1 & 0 & 1 & 1 & 0 \\
\bar{e} & 0
\end{array}\right] \\
\bar{v}=\bar{c}+\bar{e}=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 0
\end{array}\right]
\end{array}\right] \begin{array}{c}
\bar{s}^{T}=\overline{\bar{H}} \cdot \bar{v}^{T}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \\
\hat{\bar{e}}=\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
1
\end{array}\right]
\end{array}\right]
$$

