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Theorem: If the discrete random variable X has n possible values, then

• Proof lower bound:

 

• Proof upper bound:

( )  

The Entropy H(X) has a maximum by 
·

Uniformly distributed random variable has maximum Entropy.

The Entropy is bounded
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Binary random variable RV X, just two possibilities:

Discrete probability distribution function (PDF) is characterized by one parameter p:

Binary entropy function h(p):

( ) ( )  

• Maximum of h(p) at uniform distribution:

• If 

→ →

• If 

→ →

Special case: Binary random variable

h(p)

0
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• A branch of mathematics concerned with the analysis of random phenomena. 
• Def. Random Variable (RV): The outcome of a random event cannot be determined before it 

occurs, but it may be any one of several (could be infinite) possible outcomes.
Discrete Random Variable Continuous Random variable
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Recap: Probability Theory

e.g. Uniformly distributed RV



Discrete Random Variable Continuous Random variable

1st moment of a RV, Expected value, Mean value, = =

∑ · ·

kth moment of a RV, =

∑ · ·

2nd central moment, Variance, =

= − = − = − = −

∑ − · − ·

PDF Example: Normal (Gaussian) distribution

(first order = one dimensional):
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Standard Gaussian distribution
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Recap: Probability Theory



The Entropy H(X) of the continuous RV X with PDF is called as Differential Entropy and 
defined as:

 

X

where X denotes the set of values for which .

This is an extension of entropy for a discrete RV, however, lacks the same physical meaning 
(not guaranteed to be positive). Fortunately, mutual information I(X;Y) (See later) for 
continuous RV’s X and Y can be considered as a measure of reduction of uncertainty.
Examples:

Entropy of Continuous Random Variable, Differential Entropy
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Example: Linear quantization of analog random voltage function x(t) with uniform value 
distribution in the range [-5V … +5V] applying 8 quantization levels.

Entropy of Continuous Random Variable, Differential Entropy
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Entropy of Continuous Random Variable, Differential Entropy

Arkhimédész (with Greek-letters: Αρχιμήδης)
„Heuréka!”, got it!

Really?

uniform value distribution in the range [-5V … +5V] 3,32192809...

Linear quantization applying n quantization levels:

n

4 2 2,5 1,32192809... 3,32192809...
8 3 1,25 0,32192809... 3,32192809...
16 4 0,625 -0,6780719… 3,32192809...

For discrete RV For continuous RV

Fortunately, mutual information for continuous RV’s can be considered as a measure!



• We need to transmit/store not just one outcome of a random variable, but a series 
of such outcomes. 

• Our information sources generate the realizations of stochastic, random 
time/space functions called as Stochastic Processes .

There are two common interpretations (and a third one):

Stochastic processes

Infinite series of RV 
ordered in time (or space).

The whole (infinite) set of realizations.

Time
(or Space)

Finite set of possible realizations 
occurs with given probabilities.
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• Cumulative Distribution Function (CDF) n-th order

Joint probability
• Probability Density Function (PDF) n-th order

• Expected value function - ensemble averages not time averages (if exist)

 

• Instantaneous Power:  

• Autocorrelation:  
 

 

• Covariance: 
   

  

 

 

Remark: If   then   

Mathematical description of stochastic processes



• D=n dimensional expected value vector defined at a given time point vector 
:

   

• Covariance matrix: quadratic n x n matrix of covariance  values of any two 
time (or space) points from a time point vector :

  

  

Main diagonal: Instantaneous power  values at the time point vector (for 
processes without direct components that is the expected values  at any time point 
of are zero i.e. the expected value vector is the vector.

• Example: D=n dimensional normal (Gaussian) distribution (n-th order PDF) of a 
process with and – notation determinant , inverse , transpose 

of matrix :

Mathematical description of stochastic processes



• D=
̅

• D=1, we investigate the process at a given time point t
Expected value:  

Variance:   

 

• D=2, we investigate the process at given time points (notation ):
Expected value vector:   
 If the ensemble average time invariant and zero (no direct component):
 If the instantaneous power time invariant:

    ̅ ,
 and the process is not correlated   then 

Covariance matrix: ̅

̅

̅

D dimensional normal (Gaussian) stochastic processes



• Stationarity in n-th order

for any and any set of 
This means that the distribution of a finite sub-sequence of random variables of the 
stochastic process remains the same as we shift it along the time index axis.

• Strict-sense Stationarity or strong-sense Stationarity (or simply Stationarity)
If the process is stationary in n-th order for any n, even if 

• Wide Sense Stationarity (WSS) or weak-sense stationarity, covariance stationarity
WSS only requires the shift-invariance (in time) of the first moment and the cross moment. 
This means the process has the same mean at all time points, and that the covariance 
between the values at any two time points, depend only on the difference between the two 
times.

Stationarity of stochastic processes
In the most intuitive sense, stationarity means that 
the statistical properties of a process generating a 
time series do not change over time. 



• Wide Sense Stationarity (WSS) or weak-sense stationarity, covariance stationarity

 Expected value function is constant
 =  =    ∀ 

 Covariance: 
 , + = (ξ −  ) · (ξ −  ) =  + ∆ , + ∆ + =  

  ∀ , ∀ ∆
Or similarly because  constant:

 Autocorrelation: 

 , + = ξ · ξ =  + ∆ , + ∆ + =  
  ∀ , ∀ ∆

• Remark: Second order stationarity vs. WSS: 

2nd order Stationarity => WSS however WSS ≠> 2nd order Stationarity

 , = ξ · ξ = · ·

 

 

, , ,

Examples: http://www.hit.bme.hu/~dallos/hirkelm/Sztfoly_exmp.pdf

Stationarity of stochastic processes



Stationarity of stochastic processes


