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The Entropy is bounded
Theorem: If the discrete random variable X has n possible values, then
0<HX)<ldn=HyX)
* Proof lower bound:
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* Proof upper bound:
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HX)—1ldn<0
H(x)
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= Z?—ll -3t 1p(xl)] =0 The Entropy H(X) has a maximumbyz =1 =

p(x;) = 1/n, Vi — Uniformly distributed random variable has maximum Entropy.



Special case: Binary random variable

Binary random variable RV X, just two possibilities:
X ={x; = 1,Yes,Black, True, ...; x, = 0, No, White, False, --- }

Discrete probability distribution function (PDF) is characterized by one parameter p:
p(X) ={p(x1) =p; p(xz) =1—p}
Binary entropy function h(p):
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Recap: Probability Theory

* A branch of mathematics concerned with the analysis of random phenomena.

 Def. Random Variable (RV): The outcome of a random event cannot be determined before it
occurs, but it may be any one of several (could be infinite) possible outcomes.

Discrete Random Variable Continuous Random variable
X = {xll xZ; .“;xn} X = {x € [xminr xmax]}
Cumulative Distribution Function (CDF)
X;<Xx X
Py(x) = Prob(X < x) = Z p(x;) Fy(x) = Prob(X < x) = j fx(z)dz
i=1 Z=—00
Probability Density Function (PDF)
d
px(x) = {p(x1),p(x2), -, p(xp)} an(x) = fx(x)
b
Prob(a < X < b) = Pyx(b) — Px(a) Prob(a < X < b) = Fx(b) — Fx(a) = j fx(z)dz
zZ=Qa
pX(x)'T Py (x) e.g. Uniformly distributed RV
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Recap: Probability Theory

Discrete Random Variable Continuous Random variable
15t moment of a RV, Expected value, Mean value, E{X} = u;(X) = u,

(00}

=1 % - p(x;) f_oox fx(x) dx
kt" moment of a RV, E{X"*} = p;, (X)
L xl - p () JZo xR f () dxc

2" central moment, Variance, Var(X) = o7

Var(X) = E{(X — u,)?} = E{X?} = (E{X}? = 1, X)) — p = up(X) — p2(X)

O = u)? - p(xy) ffooo(x — 1)? - fy(x)dx

PDF Example: Normal (Gaussian) distribution **|

(first order = one dimensional):

1 (x — py)?
D) = == exp (— Ty
270, 20y
Standard Gaussian distribution

Gy = 0'0-9% =1)

(TR} o2
p=0 = 10
H=0a
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Entropy of Continuous Random Variable, Differential Entropy

The Entropy H(X) of the continuous RV X with PDF fx(x) is called as Differential Entropy and
defined as:

HX) =E {ld } = —E{ldfy(x)} = - j fx(x) - ldfx(x) dx
X

1
fx (x)
where x denotes the set of values for which fy(x) > 0.

This is an extension of entropy for a discrete RV, however, lacks the same physical meaning
(not guaranteed to be positive). Fortunately, mutual information [(X;Y) (See later) for
continuous RV’s X and Y can be considered as a measure of reduction of uncertainty.

Examples:
A fx(x)
21 1 2 1 ]
1/2 H(X)=jo§.ld2dx=§jo 1dx=§-[x]0=1
0 x>
2

ZA ¥ (x)
1
1/2 1 3

H(X)=J 2-ld§dx=—2J 1dx=—2-[x](1)/2=—1

0 0
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Entropy of Continuous Random Variable, Differential Entropy

Example: Linear quantization of analog random voltage function x(t) with uniform value
distribution in the range [-5V ... +5V] applying 8 quantization levels.

x(t) fx(xﬁ‘
() 5V 1/10
| ,
7 5 -5 5 X
of - £ H(X) = js L ld10dx = = 2420 js1d
~ ) (10 S50 )™
5 = 1d10 = 3,322
| | | fq(q)A
i Tg " 1/1,25
1 $ Q quantization step =1,25V —0,625 0,625 4
0,625
-5V H(q) — j .
p(d) P, /8 _0625 1,25
12> JWS 1dx = 1d1,25 =~ 0,322
— . x e
i‘l‘i‘l“l‘i‘l‘i 1’25 -0,625
syl 2 3456 7 85H(X)_ 1 _il 86 3 bit
p(d;)) 428 - ~ 7 |Symbol

i=1



Entropy of Continuous Random Variable, Differential Entropy

Arkhimédész (with Greek-letters: Apxiunéng)
,Heuréka!”, got it!

Really?

uniform value distribution in the range [-5V ... +5V] H(X) = 1d10 = 3,321928009...

Linear quantization applying n quantization levels:

bit

n H;(X)=1ldn Symbol Q =10/n H(g) =1dQ H;(X)+ H(q)
2 2,5 1,321928009... 3,321928009...
8 3 1,25 0,321928089... 3,321928009...
16 4 0,625 -0,6780719... 3,321928009...
For discrete RV For continuous RV
0<p(x;)<1Vi 0< fx(x) <1 1< fyx(x)
1 . 1 1
< < <
1= p(xl-)1< ® Vi 1= fx(X)1< * 0= @ <1
< ] <
Osldey vt 0=<ld 5 Lowes Il

Fortunately, mutual information for continuous RV’s can be considered as a measure!



Stochastic processes &

* We need to transmit/store not just one outcome of a random variable, but a series

of such outcomes.

* Ourinformation sources generate the realizations of stochastic, random
time/space functions called as Stochastic Processes ¢ .

There are two common interpretations (and a third one):

The whole (infinite) set of realizations.

V. N

Z1 (f, t)

RAYNPagV

T2 (57 t)

AAASAWA

LV
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VAN
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number

\ 4

t

random
variable

1

Infinite series of RV
ordered in time (or space).

p(1)
L . L Time
T 1 Vg .. (or S;ace)
p2) & &, b vt & Gy
p(3)
p(4)

Finite set of possible realizations
occurs with given probabilities.



Mathematical description of stochastic processes

Cumulative Distribution Function (CDF) n-th order

Fé")(xl,xz, vy Xyt toy v, b)) = Fz(n)(f,f) = Prob(Et1 S X186, S X &, S xn)
Joint probability

Probability Density Function (PDF) n-th order

fz(n)(xl'xz’ vy X, 81, Cg, eun, tn) — fz(n)(f’ t_) =

n

FV (%, )

0x10X5 ...0x,

Expected value function - ensemble averages not time averages (if exist)

co

me 0 =BG = | x 00 0dx

Instantaneous Power: P (t) = E{g.*} = fjoooxz -fz(l) (x, t)dx

Autocorrelation: Re (t1,t;) = E{&, - &} = [[x1 - x; -fz(z)(xl,xz, ty, ty)dx dx,

Covariance:

Ki (t;,tp) = E{(Etl —mg (t1)) + (&, — M (tZ))} —
= [[ = mg € - G = g (€200 AP Gxa 00,11, )17

Remark: If mE (tl) = mz (tz) = 0 then RE (tll tz) = KE (tll tz)



Mathematical description of stochastic processes

 D=ndimensional expected value vector ﬁlf(f) defined at a given time point vector
t = [ty ty, ..., th]:

Tl_’lg(f) — [mg (tl):mz (tZ)r rmE (tn)]

* Covariance matrix: quadratic n x n matrix of covariance Kz (ti, tj) values of any two
time (or space) points ¢;, t; from a time point vector t:

_ KE (t1; tl) KE (tl; tn)
KE(D = : :
KE (tnr tl) KE (tn' tn)

Main diagonal: Instantaneous power P¢ (t) = E{Etz} values at the time point vector t (for
processes without direct components that is the expected values mg (t) at any time point
of t are zero i.e. the expected value vector Tﬁf(f) is the 0 vector.

 Example: D=n dimensional normal (Gaussian) distribution (n-th order PDF) of a

process with i (t) and K=§(f) — notation determinant ||M]||, inverse M~1, transpose
MT of matrix M:

1 1 —
& E) = : ——-exp (— > X -me®] - KD - [x - mg(D]T>
o |0



D dimensional normal (Gaussian) stochastic processes
« D=n: [V(&,D) = exp (=3 [x - me (D] - Ke(® ™" - [x - me(D]')

|||

s G(l) (x,t)
D=1, we investigate the process at a given time point t .

Expected value: i, = mg (t) = E{§;}
=0
Variance: 62 = E{(§; — 1,)*} = K: (¢,t) LL:PE (t)

0 A X

1 _ 2
PDF: fG(l)(x, t) = exp (— < M;‘) ) — >
/ 2 20%
2TTOy x
« D=2, we investigate the process at given time points t = [t4, t5] (notation X = [xq, x,]):

Expected value vector: m;(t) = [mg (t1), mg (tz)]
v’ If the ensemble average time invariant and zero (no direct component): m¢(t) = 0
v If the instantaneous power time invariant:

Pe (t1) = Pg (tp) = K (81, t1) = Ki (t2,t5) = 0%,

“fG(Z) (xl; X2, U1, tZ)
v’ and the process is not correlated Kz (ty, t;) = Kg (t5,t1) = 0 then

2

. = o 0
Covariance matrix: Kz (t) =
0 O5




Stationarity of stochastic processes

{ 1 " i "l it

. e . . . : | ! 1l I:.‘."lj, iu!:ll }1“ I‘! ‘,!. ;.;;‘I jlll'll. \ Ll r -lJ :‘?'I 'l-‘.

In the most intuitive sense, stationarity means that | WA AR Ay
the statistical properties of a process generating a o

time series do not change over time. sty T o

 Stationarity in n-th order . VAl
F (1, X, oo X b1, by e t) = Fg D (0, Xz, o Xty + AL + AL, .ty + AL)

Fz(n)(f, t) = Fz(n) (x,t + At) for any At and any set of t = [tq, to, ..., t;,]

This means that the distribution of a finite sub-sequence of random variables of the
stochastic process remains the same as we shift it along the time index axis.

e Strict-sense Stationarity or strong-sense Stationarity (or simply Stationarity)
If the process is stationary in n-th order for any n, even if n = oo

FE(") (x,t) = Fz(n) (X, t + At) holds for V At,Vt,Vn

* Wide Sense Stationarity (WSS) or weak-sense stationarity, covariance stationarity

WSS only requires the shift-invariance (in time) of the first moment and the cross moment.
This means the process has the same mean at all time points, and that the covariance
between the values at any two time points, depend only on the difference between the two
times.



Stationarity of stochastic processes

 Wide Sense Stationarity (WSS) or weak-sense stationarity, covariance stationarity

v Expected value function is constant
mg (t) = mg (£p) = mg holds for Vit

v Covariance:
Ke (t,t + 1) = E{(§&—mg ) * (§rer —me )} = Ke (¢ + AL, t + At +7) = K (1)
holds for V t,V At
Or similarly because mg constant:

v' Autocorrelation:

Re (6,t + 1) = E{§ - &40} = Rg (t + AL, t + At + 7) = Rg (7)
holds for V t,V At

 Remark: Second order stationarity vs. WSS:

2nd order Stationarity => WSS however WSS #> 2nd order Stationarity
Re (t1,t,) = E{&, -} = % fP (y, X, £, ) doxy d
el b2 Etl Etz X1 * X2 fg X1,X2,11,12)Ax10X7

Examples: http://www.hit.bme.hu/~dallos/hirkelm/Sztfoly exmp.pdf



Stationarity of stochastic processes

T Iy T T T e

stationary mean > non-stationary mean > stationary mean
stationary variance stationary variance non-stationary variance



