Ûrkommunikáció Space Communication 2023/2.

Dr. János Bitó
bito.janos@vik.bme.hu
Dept. of Broadband Infocommunications and Electromagnetic Theory

The Entropy is bounded

Theorem: If the discrete random variable X has \boldsymbol{n} possible values, then

$$
0 \leq \mathbf{H}(X) \leq l d n=H_{0}(X)
$$

- Proof lower bound:

$$
\begin{aligned}
& 0 \leq p\left(x_{i}\right) \leq 1 \forall i \\
& \operatorname{ld} p\left(x_{i}\right)=\frac{1}{\ln 2} \ln p\left(x_{i}\right) \forall i \\
& H(X)=-\sum_{i=1}^{n} p\left(x_{i}\right) \frac{1}{\ln 2} \ln p\left(x_{i}\right) \geq 0\left[\frac{\text { bit }}{\text { symbol }}\right]
\end{aligned}
$$

- Proof upper bound:

$$
\begin{aligned}
& \mathrm{H}(X) \leq l d n \\
& \mathrm{H}(X)-l d n \leq 0 \\
& H(x) \\
& \frac{1}{\ln 2} \sum_{i=1}^{n} p\left(x_{i}\right) \ln \frac{1}{p\left(x_{i}\right)}-\overbrace{\frac{1}{\ln 2} \sum_{i=1}^{n} p\left(x_{i}\right) \ln n}= \\
& =\frac{1}{\ln 2} \sum_{i=1}^{n} p\left(x_{i}\right) \ln \underbrace{\frac{1}{n \cdot p\left(x_{i}\right)}}_{z} \leq \frac{1}{\ln 2} \sum_{i=1}^{n} p\left(x_{i}\right)[z-1]=\frac{1}{\ln 2} \sum_{i=1}^{n} p\left(x_{i}\right)\left[\frac{1}{n \cdot p\left(x_{i}\right)}-1\right]= \\
& =\frac{1}{\ln 2}[\underbrace{\sum_{i=1}^{n} \frac{1}{n}}_{1}-\underbrace{\sum_{i=1}^{n} p\left(x_{i}\right)}_{1}]=0 \\
& \text { The Entropy } \boldsymbol{H}(X) \text { has a maximum by } \mathrm{z}=1=\frac{1}{n \cdot p\left(x_{i}\right)} \forall i \\
& p\left(x_{i}\right)=1 / n, \forall i \rightarrow \text { Uniformly distributed random variable has maximum Entropy. }
\end{aligned}
$$

Special case: Binary random variable

Binary random variable RV X, just two possibilities:

$$
X=\left\{x_{1}=1, \text { Yes, Black, True }, \ldots ; x_{2}=0, \text { No, White, False }, \cdots\right\}
$$

Discrete probability distribution function (PDF) is characterized by one parameter \boldsymbol{p} :

$$
p(X)=\left\{p\left(x_{1}\right)=p ; p\left(x_{2}\right)=1-p\right\}
$$

Binary entropy function $\boldsymbol{h}(p)$:

$$
\mathrm{h}(p)=\sum_{i=1}^{2} p\left(x_{i}\right) \cdot l d \frac{1}{p\left(x_{i}\right)}=p \cdot l d \frac{1}{p}+(1-p) \cdot l d \frac{1}{(1-p)}\left[\frac{\text { bit }}{\text { binary symbol }}\right]
$$

- Maximum of $h(p)$ at uniform distribution:
$\mathrm{h}(p=1 / 2)=1\left[\frac{\text { bit }}{\text { binary symbol }}\right]$
- If $p \rightarrow 0$
$\lim _{p \rightarrow 0} p \cdot l d \frac{1}{p}=0 ; \lim _{p \rightarrow 0}(1-p) \cdot l d \frac{1}{(1-p)}=l d 1=0$
- If $p \rightarrow 1$
$\lim _{p \rightarrow 1} p \cdot l d \frac{1}{p}=0 ; \lim _{p \rightarrow 1}(1-p) \cdot l d \frac{1}{(1-p)}=0$

Recap: Probability Theory

- A branch of mathematics concerned with the analysis of random phenomena.
- Def. Random Variable (RV): The outcome of a random event cannot be determined before it occurs, but it may be any one of several (could be infinite) possible outcomes.

Discrete Random Variable
$X=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$

Continuous Random variable

$$
X=\left\{x \in\left[x_{\min }, x_{\max }\right]\right\}
$$

Cumulative Distribution Function (CDF)

$P_{X}(x)=\operatorname{Prob}(X \leq x)=\sum_{i=1}^{x_{i} \leq x} p\left(x_{i}\right)$

$$
F_{X}(x)=\operatorname{Prob}(X \leq x)=\int_{z=-\infty}^{x} f_{X}(z) d z
$$

Probability Density Function (PDF)

$$
p_{X}(x)=\left\{p\left(x_{1}\right), p\left(x_{2}\right), \cdots, p\left(x_{n}\right)\right\}
$$

$$
\frac{d}{d x} F_{X}(x)=f_{X}(x)
$$

$$
\operatorname{Prob}(a<X \leq b)=P_{X}(b)-P_{X}(a)
$$

$$
\operatorname{Prob}(a<X \leq b)=F_{X}(b)-F_{X}(a)=\int_{z=a}^{b} f_{X}(z) d z
$$

Recap: Probability Theory

Discrete Random Variable
Continuous Random variable
$1^{\text {st }}$ moment of a RV, Expected value, Mean value, $E\{X\}=\mu_{1}(X)=\mu_{x}$

$$
\begin{aligned}
\sum_{i=1}^{n} x_{i} \cdot p\left(x_{i}\right) & \int_{-\infty}^{\infty} x \cdot f_{X}(x) d x \\
\mathrm{k}^{\text {th }} \text { moment of a RV, } E\left\{X^{k}\right\}= & \mu_{k}(X)
\end{aligned}
$$

$$
\sum_{i=1}^{n} x_{i}^{k} \cdot p\left(x_{i}\right) \quad \int_{-\infty}^{\infty} x^{k} \cdot f_{X}(x) d x
$$

$2^{\text {nd }}$ central moment, Variance, $\operatorname{Var}(X)=\sigma_{x}^{2}$

$$
\operatorname{Var}(X)=E\left\{\left(X-\mu_{x}\right)^{2}\right\}=E\left\{X^{2}\right\}-(E\{X\})^{2}=\mu_{2}(X)-\mu_{x}^{2}=\mu_{2}(X)-\mu_{1}^{2}(X)
$$

$$
\sum_{i=1}^{n}\left(x_{i}-\mu_{x}\right)^{2} \cdot p\left(x_{i}\right)
$$

$$
\int_{-\infty}^{\infty}\left(x-\mu_{x}\right)^{2} \cdot f_{X}(x) d x
$$

PDF Example: Normal (Gaussian) distribution
(first order = one dimensional):
$f_{x}^{(1)}(x)=\frac{1}{\sqrt{2 \pi \sigma_{x}^{2}}} \exp \left(-\frac{\left(x-\mu_{x}\right)^{2}}{2 \sigma_{x}^{2}}\right)$
Standard Gaussian distribution
$G\left(\mu_{x}=0, \sigma_{x}^{2}=1\right)$

Entropy of Continuous Random Variable, Differential Entropy

The Entropy $\boldsymbol{H}(X)$ of the continuous RV \boldsymbol{X} with PDF $\boldsymbol{f}_{\boldsymbol{X}}(\boldsymbol{x})$ is called as Differential Entropy and defined as:

$$
H(X)=E\left\{l d \frac{1}{f_{X}(x)}\right\}=-E\left\{l d f_{X}(x)\right\}=-\int_{X} f_{X}(x) \cdot l d f_{X}(x) d x
$$

where \times denotes the set of values for which $\boldsymbol{f}_{\boldsymbol{X}}(\boldsymbol{x})>\mathbf{0}$.
This is an extension of entropy for a discrete $R V$, however, lacks the same physical meaning (not guaranteed to be positive). Fortunately, mutual information I(X;Y) (See later) for continuous RV's X and Y can be considered as a measure of reduction of uncertainty.
Examples:

$$
H(X)=\int_{0}^{2} \frac{1}{2} \cdot l d 2 d x=\frac{1}{2} \int_{0}^{2} 1 d x=\frac{1}{2} \cdot[x]_{0}^{2}=1
$$

$$
H(X)=\int_{0}^{1 / 2} 2 \cdot l d \frac{1}{2} d x=-2 \int_{0}^{\frac{1}{2}} 1 d x=-2 \cdot[x]_{0}^{1 / 2}=-1
$$

Entropy of Continuous Random Variable, Differential Entropy

Example: Linear quantization of analog random voltage function $\mathbf{x}(\mathrm{t})$ with uniform value distribution in the range $[-5 \mathrm{~V} \ldots+5 \mathrm{~V}]$ applying 8 quantization levels.

Entropy of Continuous Random Variable, Differential Entropy

Arkhimédész (with Greek-letters: Apxırŋ́סnऽ)
„Heuréka!", got it!

Really?
uniform value distribution in the range [-5V ... +5V]

$$
\mathrm{H}(X)=l d 10=3,32192809 \ldots
$$

Linear quantization applying \boldsymbol{n} quantization levels:

n	$H_{d}(X)=l d n \frac{b i t}{\text { symbol }}$		$Q=10 / n$	$H(q)=l d Q$	$H_{d}(X)+H(q)$
4	2	2,5	$1,32192809 \ldots$	$3,32192809 \ldots$	
8	3	1,25	$0,32192809 \ldots$	$3,32192809 \ldots$	
16	4	0,625	$-0,6780719 \ldots$	$3,32192809 \ldots$	

$$
\begin{aligned}
& \text { For discrete RV } \\
& 0<p\left(x_{i}\right) \leq 1 \forall i \\
& 1 \leq \frac{1}{p\left(x_{i}\right)}<\infty \forall i \\
& 0 \leq l d \frac{1}{p\left(x_{i}\right)} \quad \forall i
\end{aligned}
$$

For continuous RV

$$
\begin{array}{ll}
0<f_{X}(x) \leq 1 & 1<f_{X}(x) \\
1 \leq \frac{1}{f_{X}(x)}<\infty & 0 \leq \frac{1}{f_{X}(x)}<1 \\
0 \leq l d \frac{1}{f_{X}(x)} & l d \frac{1}{f_{X}(x)}<0
\end{array}
$$

Fortunately, mutual information for continuous RV's can be considered as a measure!

Stochastic processes ξ

- We need to transmit/store not just one outcome of a random variable, but a series of such outcomes.
- Our information sources generate the realizations of stochastic, random time/space functions called as Stochastic Processes ξ.
There are two common interpretations (and a third one):

The whole (infinite) set of realizations.

Infinite series of RV ordered in time (or space).

Mathematical description of stochastic processes

- Cumulative Distribution Function (CDF) n-th order

$$
F_{\xi}^{(n)}\left(x_{1}, x_{2}, \ldots, x_{n}, t_{1}, t_{2}, \ldots, t_{n}\right)=F_{\xi}^{(n)}(\bar{x}, \bar{t})=\operatorname{Prob}\left(\xi_{t_{1}} \leq x_{1}, \xi_{t_{2}} \leq x_{2}, \ldots, \xi_{t_{n}} \leq x_{n}\right)
$$

Joint probability

- Probability Density Function (PDF) n-th order

$$
f_{\xi}^{(n)}\left(x_{1}, x_{2}, \ldots, x_{n}, t_{1}, t_{2}, \ldots, t_{n}\right)=f_{\xi}^{(n)}(\bar{x}, \bar{t})=\frac{\delta^{n}}{\delta x_{1} \delta x_{2} \ldots \delta x_{n}} F_{\xi}^{(n)}(\bar{x}, \bar{t})
$$

- Expected value function - ensemble averages not time averages (if exist)

$$
m_{\xi}(t)=E\left\{\xi_{t}\right\}=\int_{-\infty}^{\infty} x \cdot f_{\xi}^{(1)}(x, t) d x
$$

- Instantaneous Power: $P_{\xi}(t)=E\left\{\xi_{t}^{2}\right\}=\int_{-\infty}^{\infty} x^{2} \cdot f_{\xi}^{(1)}(x, t) d x$
- Autocorrelation: $R_{\xi}\left(t_{1}, t_{2}\right)=E\left\{\xi_{t_{1}} \cdot \xi_{t_{2}}\right\}=\iint x_{1} \cdot x_{2} \cdot f_{\xi}^{(2)}\left(x_{1}, x_{2}, t_{1}, t_{2}\right) d x_{1} d x_{2}$
- Covariance:

$$
\begin{aligned}
& K_{\xi}\left(t_{1}, t_{2}\right)=E\left\{\left(\xi_{t_{1}}-m_{\xi}\left(t_{1}\right)\right) \cdot\left(\xi_{t_{2}}-m_{\xi}\left(t_{2}\right)\right)\right\}= \\
& =\iint\left(x_{1}-m_{\xi}\left(t_{1}\right)\right) \cdot\left(x_{2}-m_{\xi}\left(t_{2}\right)\right) \cdot f_{\xi}^{(2)}\left(x_{1}, x_{2}, t_{1}, t_{2}\right) d x_{1} d x_{2}
\end{aligned}
$$

Remark: If $m_{\xi}\left(t_{1}\right)=m_{\xi}\left(t_{2}\right)=0$ then $R_{\xi}\left(t_{1}, t_{2}\right)=K_{\xi}\left(t_{1}, t_{2}\right)$

Mathematical description of stochastic processes

- D=n dimensional expected value vector $\overline{\boldsymbol{m}}_{\xi}(\overline{\boldsymbol{t}})$ defined at a given time point vector $\bar{t}=\left[t_{1}, t_{2}, \ldots, t_{n}\right]:$

$$
\bar{m}_{\xi}(\bar{t})=\left[m_{\xi}\left(t_{1}\right), m_{\xi}\left(t_{2}\right), \ldots, m_{\xi}\left(t_{n}\right)\right]
$$

- Covariance matrix: quadratic $\mathrm{n} \times \mathrm{n}$ matrix of covariance $K_{\xi}\left(t_{i}, t_{j}\right)$ values of any two time (or space) points t_{i}, t_{j} from a time point vector \bar{t} :

$$
\overline{\overline{K_{\xi}}}(\bar{t})=\left[\begin{array}{ccc}
K_{\xi}\left(t_{1}, t_{1}\right) & \cdots & K_{\xi}\left(t_{1}, t_{n}\right) \\
\vdots & \ddots & \vdots \\
K_{\xi}\left(t_{n}, t_{1}\right) & \cdots & K_{\xi}\left(t_{n}, t_{n}\right)
\end{array}\right]
$$

Main diagonal: Instantaneous power $\boldsymbol{P}_{\xi}(\boldsymbol{t})=E\left\{\xi_{t}{ }^{2}\right\}$ values at the time point vector \bar{t} (for processes without direct components that is the expected values $m_{\xi}(t)$ at any time point of \bar{t} are zero i.e. the expected value vector $\overline{\boldsymbol{m}}_{\xi}(\overline{\boldsymbol{t}})$ is the $\overline{\mathbf{0}}$ vector.

- Example: $\mathbf{D = n}$ dimensional normal (Gaussian) distribution (n-th order PDF) of a process with $\overline{\boldsymbol{m}}_{\xi}(\overline{\boldsymbol{t}})$ and $\overline{\overline{\boldsymbol{K}_{\xi}}}(\overline{\boldsymbol{t}})$ - notation determinant $\|M\|$, inverse M^{-1}, transpose M^{T} of matrix M :

$$
f_{\xi}^{(n)}(\bar{x}, \bar{t})=\frac{1}{\sqrt[2]{(2 \pi)^{n}\left\|\overline{\overline{K_{\xi}}}(t)\right\|}} \exp \left(-\frac{1}{2} \cdot\left[\bar{x}-\bar{m}_{\xi}(\bar{t})\right] \cdot \overline{\overline{K_{\xi}}}(\bar{t})^{-1} \cdot\left[\bar{x}-\bar{m}_{\xi}(\bar{t})\right]^{T}\right)
$$

D dimensional normal (Gaussian) stochastic processes

- $\boldsymbol{D}=\boldsymbol{n}: f_{\xi}^{(n)}(\bar{x}, \bar{t})=\frac{1}{\sqrt[2]{(2 \pi)^{n}\left\|\overline{\overline{K_{\xi}}}(\bar{t})\right\|}} \exp \left(-\frac{1}{2} \cdot\left[\bar{x}-\bar{m}_{\xi}(\bar{t})\right] \cdot \overline{\overline{K_{\xi}}}(\bar{t})^{-1} \cdot\left[\bar{x}-\bar{m}_{\xi}(\bar{t})\right]^{T}\right)$
- $\boldsymbol{D}=\mathbf{1}$, we investigate the process at a given time point \boldsymbol{t}

Expected value: $\mu_{x}=m_{\xi}(t)=E\left\{\xi_{t}\right\}$
Variance: $\sigma_{x}^{2}=E\left\{\left(\xi_{t}-\mu_{x}\right)^{2}\right\}=K_{\xi}(t, t) \stackrel{\mu_{x}=0}{\Longrightarrow} P_{\xi}(t)$
PDF: $f_{G}^{(1)}(x, t)=\frac{1}{\sqrt{2 \pi \sigma_{x}^{2}}} \exp \left(-\frac{\left(x-\mu_{x}\right)^{2}}{2 \sigma_{x}^{2}}\right)$

- $\boldsymbol{D}=\mathbf{2}$, we investigate the process at given time points $\bar{t}=\left[\boldsymbol{t}_{\mathbf{1}}, \boldsymbol{t}_{\mathbf{2}}\right]$ (notation $\bar{x}=\left[x_{1}, x_{2}\right]$):

Expected value vector: $\bar{m}_{\xi}(\bar{t})=\left[m_{\xi}\left(t_{1}\right), m_{\xi}\left(t_{2}\right)\right]$
\checkmark If the ensemble average time invariant and zero (no direct component): $\overline{\boldsymbol{m}}_{\xi}(\overline{\boldsymbol{t}})=\overline{\mathbf{0}}$
\checkmark If the instantaneous power time invariant:
$P_{\xi}\left(t_{1}\right)=P_{\xi}\left(t_{2}\right)=K_{\xi}\left(t_{1}, t_{1}\right)=K_{\xi}\left(t_{2}, t_{2}\right)=\sigma_{\bar{x}}^{2}$,
\checkmark and the process is not correlated $K_{\xi}\left(t_{1}, t_{2}\right)=K_{\xi}\left(t_{2}, t_{1}\right)=0$ then $\quad f_{G}^{(2)}\left(x_{1}, x_{2}, t_{1}, t_{2}\right)$
Covariance matrix: $\overline{\overline{K_{\xi}}}(\bar{t})=\left[\begin{array}{cc}\sigma_{\bar{x}}^{2} & 0 \\ 0 & \sigma_{\bar{x}}^{2}\end{array}\right]$
$\mathrm{PDF}: f_{G}^{(2)}(\bar{x}, \bar{t})=\frac{1}{2 \pi \sigma_{\bar{x}}^{2}} \exp \left(-\frac{|\bar{x}|^{2}}{2 \sigma_{\bar{x}}^{2}}\right)$

Stationarity of stochastic processes

In the most intuitive sense, stationarity means that the statistical properties of a process generating a
 time series do not change over time.

- Stationarity in n-th order

$$
\begin{gathered}
F_{\xi}^{(n)}\left(x_{1}, x_{2}, \ldots, x_{n}, t_{1}, t_{2}, \ldots, t_{n}\right)=F_{\xi}^{(n)}\left(x_{1}, x_{2}, \ldots, x_{n}, t_{1}+\Delta t, t_{2}+\Delta t, \ldots, t_{n}+\Delta t\right) \\
F_{\xi}^{(n)}(\bar{x}, \bar{t})=F_{\xi}^{(n)}(\bar{x}, \bar{t}+\Delta t) \text { for any } \Delta t \text { and any set of } \bar{t}=\left[t_{1}, t_{2}, \ldots, t_{n}\right]
\end{gathered}
$$

This means that the distribution of a finite sub-sequence of random variables of the stochastic process remains the same as we shift it along the time index axis.

- Strict-sense Stationarity or strong-sense Stationarity (or simply Stationarity) If the process is stationary in n -th order for any n , even if $\mathrm{n} \rightarrow \infty$

$$
F_{\xi}^{(n)}(\bar{x}, \bar{t})=F_{\xi}^{(n)}(\bar{x}, \bar{t}+\Delta t) \text { holds for } \forall \Delta t, \forall \bar{t}, \forall n
$$

- Wide Sense Stationarity (WSS) or weak-sense stationarity, covariance stationarity WSS only requires the shift-invariance (in time) of the first moment and the cross moment. This means the process has the same mean at all time points, and that the covariance between the values at any two time points, depend only on the difference between the two times.

Stationarity of stochastic processes

- Wide Sense Stationarity (WSS) or weak-sense stationarity, covariance stationarity
\checkmark Expected value function is constant

$$
m_{\xi}(t)=m_{\xi}\left(t_{0}\right)=m_{\xi} \text { holds for } \forall t
$$

\checkmark Covariance:

$$
\begin{gathered}
K_{\xi}(t, t+\tau)=E\left\{\left(\xi_{t}-m_{\xi}\right) \cdot\left(\xi_{t+\tau}-m_{\xi}\right)\right\}=K_{\xi}(t+\Delta t, t+\Delta t+\tau)=K_{\xi}(\tau) \\
\text { holds for } \forall t, \forall \Delta t
\end{gathered}
$$

Or similarly because m_{ξ} constant:
\checkmark Autocorrelation:

$$
\begin{gathered}
R_{\xi}(t, t+\tau)=E\left\{\xi_{t} \cdot \xi_{t+\tau}\right\}=R_{\xi}(t+\Delta t, t+\Delta t+\tau)=R_{\xi}(\tau) \\
\text { holds for } \forall t, \forall \Delta t
\end{gathered}
$$

- Remark: Second order stationarity vs. WSS:

2nd order Stationarity => WSS however WSS $\neq>$ 2nd order Stationarity

$$
R_{\xi}\left(t_{1}, t_{2}\right)=E\left\{\xi_{t_{1}} \cdot \xi_{t_{2}}\right\}=\iint x_{1} \cdot x_{2} \cdot f_{\xi}^{(2)}\left(x_{1}, x_{2}, t_{1}, t_{2}\right) d x_{1} d x_{2}
$$

Examples: http://www.hit.bme.hu/~dallos/hirkelm/Sztfoly_exmp.pdf

Stationarity of stochastic processes

