Méréstechnika 1. pótzárthelyi A csoport

2011. május 20.

A feladatok megoldásához csak papír, írószer, számológép használata megengedett, egyéb segédeszköz és a kommunikáció tiltott. A megoldásra fordítható idő: 90 perc. A feladatok természetesen tetszőleges sorrendben megoldhatók, de a római számmal jelzett feladatok megoldását külön papírra kérjük. A feladatok után azok pontszámát is feltüntettük. Törtpontszámokat nem adunk, indoklás nélküli eredményeket nem értékelünk. Törekedj arra, hogy tudásodat a dolgozat szép külalakja is kiemelje! A Student- és a normális eloszlás táblázatát a túloldalon találod!

- 1. Egy U feszültség mérésének hibája $\Delta U=\pm 10$ mV, a hiba véletlen, eloszlása a megadott intervallumban egyenletes. Mekkora U B típusú standard bizonytalansága $(u_B(U))$? (1 pont)
- 2. Hogyan alkalmazható a digitális oszcilloszkópok *pre trigger* funkciója zoomolásra? Ismertesd röviden a működését! (1 pont)
- 3. Rajzold fel a fázisérzékeny egyenirányító kapcsolási rajzát! Nevezd meg szövegesen az egyes egységeket, valamint add meg a bemeneti és a kimeneti jelek időfüggvényét! (1 pont)
- 4. $U_x=20~\mathrm{mV}$ effektív értékű, $f_x=5~\mathrm{kHz}$ frekvenciájú szinuszos jelet $U_n=200~\mathrm{mV}$ effektív értékű, $B=1~\mathrm{MHz}$ sávszélességű fehér zaj terhel. A zajjal terhelt jelet $f_{c,1}=4~\mathrm{kHz}$, illetve $f_{c,2}=6~\mathrm{kHz}$ törésponti frekvenciájú, ideálisnak tekinthető sáváteresztő szűrővel szűrjük. Add meg a szűrt jel effektív értékét! (2 pont)
- 5. Rajzold le, hogyan mérhető teljesítmény nullavezetőt nem tartalmazó háromfázisú rendszerben, és add meg a mért teljesítmény kifejezését! (1 pont)
- **6.** Mit jelent az *in circuit* impedanciamérés, és legalább hány vezetékes mérést kell végezni, hogy a mérést ne terhelje az in circuit mérés miatti rendszeres hiba? (1 pont)
- 7. Rajzold fel a dual-slope AD-átalakító blokkvázlatát, és ábra segítségével ismertesd működését, valamint add meg a mért feszültség kifejezését! (1 pont)
- 8. Egy hídkapcsolást földelt, $I_T=50~\mathrm{mA}$ áramú generátor táplál, a hidat alkotó ellenállások mindegyike $R=200~\Omega$ névleges értékű. A híd kimenőfeszültsége $U_0=10~\mathrm{mV}$, amelyet mérőerősítő erősít. A mérőerősítő szimmetrikus erősítése $A_s=40~\mathrm{dB}$, közösjelelnyomása $E_c=80~\mathrm{dB}$. Mekkora relatív hibát okoz a közös feszültség az erősítő kimenetén? (2 pont)
- I. Egy tejgazdaságban még hagyományos módon üvegekbe töltik a tejet, egy üvegbe pontosan 1 liter tejet kellene tölteni. Kíváncsiak voltunk, hogy átlagosan hány liter tej kerül egy üvegbe, ezért kivettünk egy szállítmányból 1000 üveget, 200-as csoportokat képeztünk belőlük, majd megmértük, hogy az egy csoportban lévő üvegek hány liter tejet tartalmaznak. A következő eredményeket kaptuk:

199.7 198.8 200.1 200.2 199.2 liter

- a) Feltételezve, hogy az üvegbe került tej térfogatának eloszlása normális, add meg az egy üvegbe töltött tej átlagos térfogatára vonatkozó p = 90% szintű konfidenciaintervallumot!
- b) Mekkora valószínűséggel nagyobb az üvegbe töltött tej átlagos térfogata, mint 1 liter? (Az eloszlásfüggvények táblázatos megadása miatt csak közelítő érték határozható meg.)

(5 pont)

- II. Egy kapacitív impedanciát 3 voltmérős módszerrel mérünk f=50 Hz-en. A gerjesztés $U_g=10.000$ V, a normálellenállás értéke $R_N=100$ Ω , a normálellenálláson és a vizsgált impedancián eső feszültség rendre $U_N=31.42$ mV, illetve $U_Z=9.999$ V.
 - a) Mekkora az impedancia abszolút értéke és fázisa?
 - b) Add meg a mért impedancia soros RC helyettesítőképét, az elemértékekkel együtt!
 - c) Tegyük fel, hogy a mérésben csak U_N mérésének hibája kritikus. Mekkora R meghatározásának relatív hibája, ha U_N mérésének hibája 1%? (A megoldáshoz használd az érzékenységszámítást!)

(5 pont)

A Student-t eloszlás táblázata

szabadságfok	p = 0.4	p = 0.2	p = 0.1	p = 0.05	p = 0.025	p = 0.01	p = 0.005	p = 0.0005
1	0.325	1.376	3.077	6.310	12.690	31.821	63.657	636.619
2	0.289	1.061	1.886	2.919	4.300	6.965	9.925	31.598
3	0.277	0.979	1.638	2.353	3.181	4.535	5.826	12.618
4	0.271	0.941	1.533	2.131	2.775	3.743	4.595	8.449
5	0.267	0.920	1.476	2.014	2.570	3.362	4.025	6.760
6	0.265	0.906	1.439	1.943	2.446	3.140	3.701	5.876
7	0.263	0.896	1.415	1.894	2.364	2.995	3.494	5.339
8	0.262	0.889	1.397	1.859	2.305	2.894	3.350	4.982
9	0.261	0.883	1.383	1.833	2.261	2.819	3.245	4.728
10	0.260	0.879	1.372	1.812	2.227	2.762	3.165	4.538
11	0.260	0.876	1.363	1.796	2.200	2.716	3.102	4.392
12	0.259	0.873	1.356	1.782	2.178	2.679	3.051	4.275
13	0.259	0.870	1.350	1.771	2.160	2.648	3.008	4.180
14	0.258	0.868	1.345	1.761	2.144	2.623	2.973	4.102
15	0.258	0.866	1.341	1.753	2.131	2.601	2.943	4.036
16	0.257	0.865	1.337	1.746	2.119	2.582	2.917	3.979
17	0.257	0.863	1.333	1.739	2.109	2.565	2.895	3.930
18	0.257	0.862	1.330	1.734	2.100	2.551	2.875	3.888
19	0.257	0.861	1.328	1.729	2.093	2.538	2.857	3.850
20	0.257	0.860	1.325	1.724	2.086	2.527	2.842	3.817

Magyarázat: $p[t \ge x] = P$, azaz P annak a valószínűsége, hogy a t valószínűségi változó értéke x-nél nagyobb vagy egyenlő. A táblázat első sorában vannak a P értékek, alattuk pedig az x-ek. Pl. 0.1 a valószínűsége annak, hogy egy 20 szabadságfokú minta esetén $t \ge 1.325$.

A normális eloszlás táblázata

p = 0.4	p = 0.2	p = 0.1	p = 0.05	p = 0.025	p = 0.01	p = 0.005	p = 0.0005
0.25	0.84	1.29	1.64	1.96	2.24	2.58	3.20

Magyarázat: $p[z \ge x] = P$, azaz P annak a valószínűsége, hogy a z valószínűségi változó értéke x-nél nagyobb vagy egyenlő. A táblázat első sorában vannak a P értékek, alattuk pedig az x-ek. Pl. 0.1 a valószínűsége annak, hogy normális eloszlású minta esetén $z \ge 1.29$.

 $u_{\delta}(U) = \frac{\partial U}{\sqrt{3}} = \sqrt{77} \text{mV}$ A 6., A higgerponiaist a helpertys horepere bell allitani, à an idialopat jelentoien negrelbokhni up, hyp T2 CCT, legyen. 7, Unite = Urlx. Nosp huf(t)= lbr wowt Ux(t) = Ux con(wt+4) Um = V Ux2+ Un & = 21,91 mV (1) A4., fran, R P P=P,+P2 (Aron-leaperda's) A metenté vrepedanciait nem emeljut hi a pedgyanó hallozetból, a zoranó inge-Janciaile hozó; portjál foldre hófil, khát legalaibb ? verelis hell. Ux= Tx. Ung

Tx

t

Ux-es | Uxy-es integralis $\overline{1}$ As = 100 Unit = Ut. A = 1V Us = LOmV $U_{c} = \frac{U_{r}}{2} = \frac{J_{r} \cdot R}{2} = 5V$

 $V_{200} = \frac{1}{N} \leq V_{c} = 195,60 \quad N = 5 \quad S = \sqrt{\frac{1}{N-1}} \leq V_{c} = 0,50580 \quad (1)$ $\Delta V_{200} = \frac{S}{IN} \cdot t_{N-1; 0,05} = 0,5781$ $P[V_{200} - \Delta V_{200} < V_{200} < V_{200} < V_{200}] = 90\%$ $199,030 < V_{200} < 200,170$ (5) $\frac{\Delta V_{200}}{200} = V_1 = 0,9980$ $\Delta V_2 = \frac{\Delta V_{200}}{200} = 2,84 \text{ me}$ P = 0,9980 D = $Dx' = \frac{S}{IN} t_{2} \frac{1}{200} \text{ the } Dx' = 2ml = 3 \quad t = 1,5 = 3$ $= 3p \approx 10\%$ => p \approx 10% $A(l_{y})$ (2 = l_{x} $\frac{u_{x}}{u_{y}} = 31.82 \text{ kg}$ cosp = $\frac{u_{y}^{2} - u_{x}^{2} - u_{y}^{2}}{2u_{x}u_{y}} \approx 0,0303$ $\psi = 1.541$ (88,27°) (1) $L + \frac{1}{\text{pic}} = (21 \left[\cos \phi + \sin \phi \right] =) \quad L = (21 \cos \phi = 962,9)$ $C = \frac{1}{(21 \text{ mingw})} = 100 \text{ nF} \quad (2)$

$$R = (21 \cos \varphi - R_{V} \frac{U_{x}}{U_{N}} \cdot \frac{U_{y}^{2} - U_{x}^{2} - u_{v}^{2}}{2u_{x}u_{N}} - R_{V} \frac{U_{y}^{2} - u_{x}^{2} - u_{v}^{2}}{2u_{x}u_{N}} + R_{V} \frac{U_{y}^{2} - u_{x}^{2} - u_{v}^{2}}{2u_{x}^{2}}), \qquad (5)$$

$$\left(\frac{\partial R}{\partial x}\right) = \frac{U_{y}^{2} - U_{x}^{2}}{U_{y}^{2} - U_{x}^{2}} \cdot 2 \frac{\partial u_{v}}{u_{N}} = 2\sqrt{16}$$

Méréstechnika 1. pótzárthelyi B csoport

2011. május 20.

A feladatok megoldásához csak papír, írószer, számológép használata megengedett, egyéb segédeszköz és a kommunikáció tiltott. A megoldásra fordítható idő: 90 perc. A feladatok természetesen tetszőleges sorrendben megoldhatók, de a római számmal jelzett feladatok megoldását külön papírra kérjük. A feladatok után azok pontszámát is feltüntettük. Törtpontszámokat nem adunk, indoklás nélküli eredményeket nem értékelünk. Törekedj arra, hogy tudásodat a dolgozat szép külalakja is kiemelje! A Student- és a normális eloszlás táblázatát a túloldalon találod!

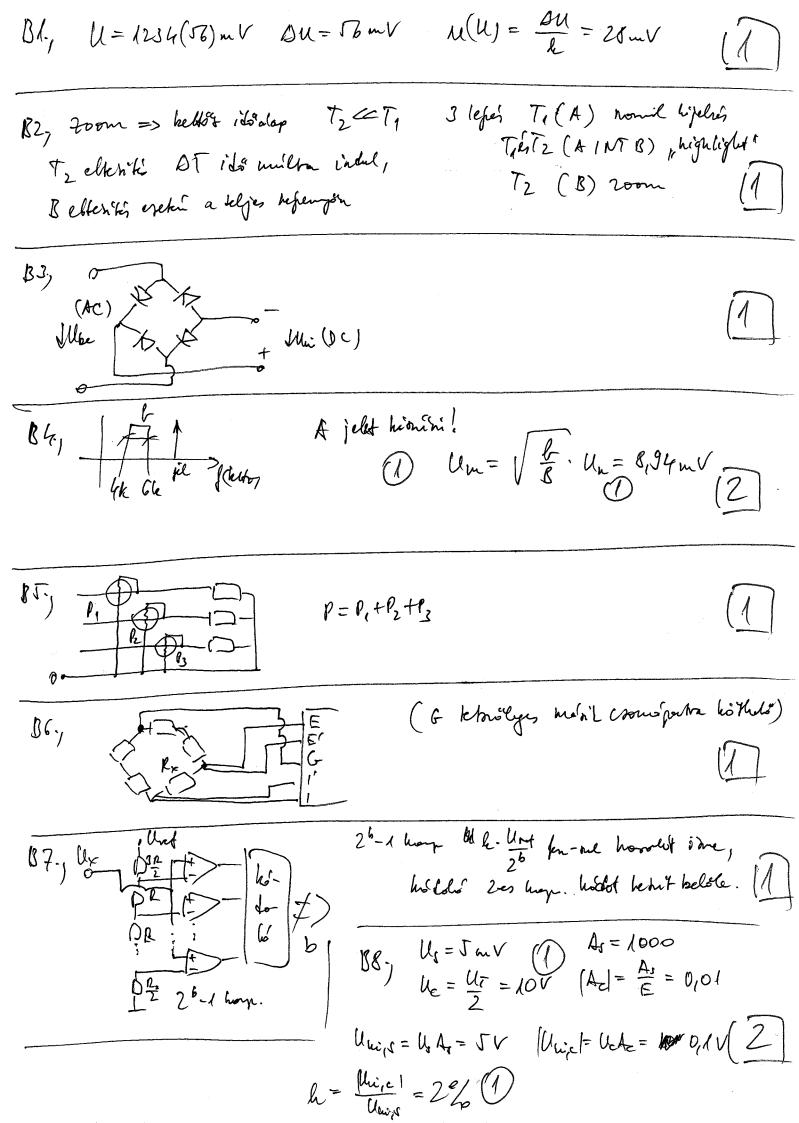
- 1. Egy U feszültségre vonatkozó mérési eredmény szabvány szerinti megadással U=1234(56) mV, k=2. Mekkora U standard bizonytalansága? (1 pont)
- 2. Hogyan működik analóg oszcilloszkópok esetében a zoom funkció? (1 pont)
- 3. Rajzold fel a Graetz-hidat (passzív kétutas egyenirányító), és jelöld be egyértelműen, hogy melyik a váltakozó áramú bemenet és melyik az egyenáramú kimenet! (1 pont)
- 4. $U_x=20$ mV effektív értékű, $f_x=15$ kHz frekvenciájú szinuszos jelet $U_n=200$ mV effektív értékű, B=1 MHz sávszélességű fehér zaj terhel. A zajjal terhelt jelet $f_{c,1}=4$ kHz, illetve $f_{c,2}=6$ kHz törésponti frekvenciájú, ideálisnak tekinthető sáváteresztő szűrővel szűrjük. Add meg a szűrt jel effektív értékét! (2 pont)
- **5.** Rajzold le, hogyan mérhető teljesítmény nullavezetőt is tartalmazó háromfázisú rendszerben, és add meg a mért teljesítmény kifejezését! (1 pont)
- **6.** 5 db ellenállás kivezetéseit összeforrasztották úgy, hogy egy ötszöget alkotnak, minden ellenállás az ötszög pontosan egy éle. Rajzold le, hogyan kell bekötni az 5 vezetékes mérés vezetékeit, ha egy konkrét ellenállás értékét akarjuk egyetlen méréssel meghatározni! (1 pont)
- 7. Rajzold fel a párhuzamos AD-átalakító (flash konverter) blokkvázlatát, és ismertesd működését! (1 pont)
- 8. Egy hídkapcsolást földelt, $U_T=20~\mathrm{V}$ feszültségű generátor táplál, a hidat alkotó ellenállások mindegyike $R=400~\Omega$ névleges értékű. A híd kimenőfeszültsége $U_0=5~\mathrm{mV}$, amelyet mérőerősítő erősít. A mérőerősítő szimmetrikus erősítése $A_s=60~\mathrm{dB}$, közösjelelnyomása $E_c=100~\mathrm{dB}$. Mekkora relatív hibát okoz a közös feszültség az erősítő kimenetén? (2 pont)
- I. Egy tejgazdaságban még hagyományos módon üvegekbe töltik a tejet, egy üvegbe pontosan 1 liter tejet kellene tölteni. Kíváncsiak voltunk, hogy átlagosan hány liter tej kerül egy üvegbe, ezért kivettünk egy szállítmányból 1000 üveget, 5-ös csoportokat képeztünk belőlük, majd megmértük, hogy az egy csoportban lévő üvegek hány liter tejet tartalmaznak. Azt kaptuk, hogy az 5-ös csoportok térfogatának átlaga $\bar{V}=998.0$ ml, szórása s=111.8 ml.
 - a) Feltételezve, hogy az üvegbe került tej térfogatának eloszlása normális, add meg az egy üvegbe töltött tej átlagos térfogatára vonatkozó p = 90% szintű konfidenciaintervallumot!
 - b) Szűkebb intervallumot kaptunk volna, ha egyesével megmérjük mind az 1000 üveget? (Tömör leírást kérünk, szükség esetén levezetéssel. Az odavetett félmondatokat és a terjengős leírásokat nem pontozzuk.)

(5 pont)

- II. Egy $f=50~{\rm Hz}$ frekvencián üzemelő induktív impedancián mérjük az átfolyó áramot, a rajta eső feszültséget, valamint a disszipált teljesítményt. A mért értékek: $I_{\rm eff}=60.66~{\rm mA},\,U_{\rm eff}=10.00~{\rm V},\,P=184.0~{\rm mW}.$
 - a) Mekkora $\cos \varphi$ értéke?
 - b) Add meg az impedancia soros RL helyettesítőképét az elemértékekkel együtt!
 - c) Tegyük fel, hogy a mérésben csak $I_{\rm eff}$ mérésének hibája kritikus. Mekkora L meghatározásának relatív hibája, ha $I_{\rm eff}$ mérésének hibája 1%? (A megoldáshoz használd az érzékenységszámítást!)

(5 pont)

A Student-t eloszlás táblázata


szabadságfok	p = 0.4	p = 0.2	p = 0.1	p = 0.05	p = 0.025	p = 0.01	p = 0.005	p = 0.0005
1	0.325	1.376	3.077	6.310	12.690	31.821	63.657	636.619
2	0.289	1.061	1.886	2.919	4.300	6.965	9.925	31.598
3	0.277	0.979	1.638	2.353	3.181	4.535	5.826	12.618
4	0.271	0.941	1.533	2.131	2.775	3.743	4.595	8.449
5	0.267	0.920	1.476	2.014	2.570	3.362	4.025	6.760
6	0.265	0.906	1.439	1.943	2.446	3.140	3.701	5.876
7	0.263	0.896	1.415	1.894	2.364	2.995	3.494	5.339
8	0.262	0.889	1.397	1.859	2.305	2.894	3.350	4.982
9	0.261	0.883	1.383	1.833	2.261	2.819	3.245	4.728
10	0.260	0.879	1.372	1.812	2.227	2.762	3.165	4.538
11	0.260	0.876	1.363	1.796	2.200	2.716	3.102	4.392
12	0.259	0.873	1.356	1.782	2.178	2.679	3.051	4.275
13	0.259	0.870	1.350	1.771	2.160	2.648	3.008	4.180
14	0.258	0.868	1.345	1.761	2.144	2.623	2.973	4.102
15	0.258	0.866	1.341	1.753	2.131	2.601	2.943	4.036
16	0.257	0.865	1.337	1.746	2.119	2.582	2.917	3.979
17	0.257	0.863	1.333	1.739	2.109	2.565	2.895	3.930
18	0.257	0.862	1.330	1.734	2.100	2.551	2.875	3.888
19	0.257	0.861	1.328	1.729	2.093	2.538	2.857	3.850
20	0.257	0.860	1.325	1.724	2.086	2.527	2.842	3.817

Magyarázat: $p[t \ge x] = P$, azaz P annak a valószínűsége, hogy a t valószínűségi változó értéke x-nél nagyobb vagy egyenlő. A táblázat első sorában vannak a P értékek, alattuk pedig az x-ek. Pl. 0.1 a valószínűsége annak, hogy egy 20 szabadságfokú minta esetén $t \ge 1.325$.

A normális eloszlás táblázata

p = 0.4	p = 0.2	p = 0.1	p = 0.05	p = 0.025	p = 0.01	p = 0.005	p = 0.0005
0.25	0.84	1.29	1.64	1.96	2.24	2.58	3.20

Magyarázat: $p[z \ge x] = P$, azaz P annak a valószínűsége, hogy a z valószínűségi változó értéke x-nél nagyobb vagy egyenlő. A táblázat első sorában vannak a P értékek, alattuk pedig az x-ek. Pl. 0.1 a valószínűsége annak, hogy normális eloszlású minta esetén $z \ge 1.29$.

Bl., S. ethelmerere: redukblt (a1), hem redukblt (a2) $S_1 = S$ $S_1 = \frac{S}{s}$ $V_{i} = V$ Q2, $DV_{i} = \frac{S}{\sqrt{1200}} \frac{2}{200} = 2,793 \text{ ml}$ (4) $V_1 = V$ $\Delta V_2 = \frac{S}{\sqrt{200}} \cdot \frac{2000}{\sqrt{200}} = 12,96$ me p [995,4me < V, < 1000,6 ml] =90% p[985,0me < V, < 1011 me] = 30% (3) leggen egy ûteg terfoyatiner ordræra T, ekhar 5 ûreje 150. 200- coppat ætlægeiner ordræra: $\frac{157}{\sqrt{200}}$, reduka (as what $\frac{\sqrt{57}}{\sqrt{200}} = \frac{7}{\sqrt{200}} = \frac{7}{\sqrt{1200}}$, minthe 1000 inget nethis volte Feltetel: VZS, eller a hart. cint. nem vélhois Mivel 200>>1, er teljevil (Redleterette laird x²-elonlossel houf. cirt. V²-re) $P = U \cdot J c_{my}$ $c_{my} = \frac{P}{U \cdot J} = 0,3033$ Q = 1,2626 (72,34°) $R + piL = (21 [as \varphi + j nn \varphi]$ $R = (21 cos \varphi = \frac{p}{J^2} \stackrel{\sim}{=} J0 \Omega$ (2)= = 164,9 1 (1) L= (2/anp = 1 \square \frac{u^2}{3^2} - \frac{p^2}{3^4} = 500 mH (2) $\frac{\partial L}{\partial J} = \frac{1}{\omega} \left[\frac{4^2}{3\sqrt{1 - \frac{2}{3^3}}} - \frac{2}{3^3} \sqrt{1 - \frac{2}{3^3}} \right] \frac{\Delta L}{L} = \left[\frac{3^2 u^2}{3^2 u^2 - \rho^2} - 2 \right] \left[\frac{\Delta J}{5} \approx 0.9\% \right]$