Úrkommunikáció
Space Communication 2023/5.

Source coding, Entropy Coding (Type III):

Encoding the source with considering the Entropy is also called Entropy Coding (Type III):

- Encode variable length \boldsymbol{k} source words to fixed length \boldsymbol{l} code words
- Without a-priori knowledge of statistical properties of the source.

Typical examples: Run-length encoding (RLE) and a generalization of RLE:

Lempel-Ziv algorithm (LZ)

- Invented by Israeli computer scientists Abraham Lempel and Jacob Ziv: „A Universal Algorithm for Sequential Data Compression," IEEE Transactions on Information Theory, 1977
- "The LZ algorithms were the first major successful universal compression algorithms". Lempel and Ziv developed algorithm enable perfect data reconstruction from compressed data and are more efficient than previous algorithms.
- Uses the source text (series of source symbols) itself as the dictionary, replacing later occurrences of a string by numbers (pointers) indicating where it occurred before and its length.

IEEE: Abraham Lempel

IEEE: Jacob Ziv

- Zip and gzip use variations of the Lempel-Ziv algorithm.

Source coding, Entropy Coding (Type III):

Run-length encoding (RLE)

- A form of lossless data compression in which runs of data (sequences in which the same data value occurs in many consecutive data elements) are stored as a single data value and count, rather than as the original run.
- This is most useful on data that contains many such runs.
- It is not useful with files that don't have many runs as it could greatly increase the file size.

Example: consider a screen containing plain black (B) text on a solid white (W) background.

- A line could be for example:

- The run-length encoded line: 12W1B12W3B24W1B14W
- The original 67 characters are encoded in only 18 characters.
- In data where runs are less frequent: encodes run lengths for runs of two or more characters only. A character appears twice denotes a run: WW12BWW12BB3WW24BWW14
- Could be combined with other encoding methods: e.g. first RLE and thereafter Huffman

Source coding, Lempel-Ziv Coding (Type III):

Jacob Ziv and Abraham Lempel developed two lossless data compression algorithms:
Lempel-Ziv 77 (LZ77) in 1977 and $\mathbf{L Z 7 8}$ the following year.
In general, the algorithms build up dynamically a dictionary of phrases, or so called phrase-book, where each phrase is a chained list of source symbols.

Algorithm's step:

- Output <d, len, c>
$d=$ distance of copied string wrt current position len = length of longest match
$c=$ next char in text beyond longest match
- Advance by len + 1

A buffer "window" has fixed length and moves

Example: LZ77 with window

What if len > d? (overlap with text to be compressed) => Simply copy starting at the cursor Other example: we already have abcd and the codeword ($2,9, \mathrm{e}$)
abcd|cdcdcdcdce

Source coding, Lempel-Ziv Coding (Type III): LZ78 algorithm

Dictionary: Each stored substring \boldsymbol{S} has an id number.

Encoding algorithm:
\checkmark Find the longest match \boldsymbol{S} in the dictionary.
\checkmark Output its id and the next character \boldsymbol{c} after the match in the input string.
\checkmark Add the substring $S c$ to the dictionary.
Decoding: builds the same dictionary and looks at ids.

Problems: How do we keep the dictionary small?
> Throw the dictionary away when it reaches a certain size (used in GIF)
> Throw the dictionary away when it is no longer effective at compressing (e.g. compress)
$>$ Throw the least-recently-used (LRU) entry away when it reaches a certain size (used in BTLZ, the British Telecom standard)

LZ78 Example: Let's consider an addressable computer memory for storing the phrases as chained characters and a symbol sequence of binary source to be compressed e.g.:
wwwwwwwwwwwwbwwwwwwwwwwwwbbewwwwwwwwwwwwwwwwwwwwwwwwbwwwwwwwwwwwwww 00000000000010000000000001110000000000000000000000001000000000000000 00000000000010000000000001110000000000000000000000001000000000

LZ78 Encoder			
Address	Stored	Stored	Codeword
(4 bits)	Pointer	Symbol	(e.g. I=5 bits)
$0000=$ NIL			
0001	0000	0	00000
0010	0001	$(0) 0$	00010
0011	0010	$(00) 0$	00100
0100	0011	$(000) 0$	00110
0101	0010	$(00) 1$	00101
0110	0100	$(0 . .0) 0$	01000
0111	0110	$(0 . .0) 0$	01100
1000	0001	$(0) 1$	00011
1001	0000	1	00001
1010	1001	$(1) 0$	10010
1011	0111	$(0 . .0) 0$	01110
1100	1011	$(0 . .0) 0$	10110
1101	1100	$(0 . .0) 1$	11001
1110	1100	$(0 . .0) 0$	11000

Encoder output = Decoder input: 000000001000100001100010101000...

Decoder output:
$00000000000010000000000001110 \ldots$

Further LZ78 Example:

```
Encoder input (Text to be compressed):
    ALIBABAABBABELEBLABLABLABLABLABLA...
    LZ78 Encoder
        LZ78 Decoder
Address Stored Stored Codeword Address Stored Stored Output
(4 bits) Pointer Symbol (e.g. l=5 bits) (4 bits) Pointer Symbol Symbols
0000=NIL
0001 0000 A 0000A
0010 0000 L 0000L
0011 0000 | 00001
0100 0000 B 0000B
0101 0001 (A)B 0001B
0110 0001 (A)A 0001A
0111 0100 (B)B 0100B
1000 0101 (AB)E 0101E
1001 0010 (L)E 0010E
1010 0100 (B)L 0100L
1011 0101 (AB)L 0101L
1100 1011 (ABL)A 1011A
1101 1010 (BL)A 1010A
1110 1101 (BLA)B 1101B
```

Encoder output = Decoder input:
0000A0000L000010000B0001B0001A0100B0101E0010E0100L0101L1011A1010A1101B
Decoder output:

Source coding, Entropy Coding (Type IV):

Encoding the source with considering the Entropy is also called Entropy Coding (Type IV):

- Encode variable length \boldsymbol{k} source words to variable length \boldsymbol{l} code words
- a-priori knowledge of statistical properties (first - or even higher - order PDF) of the source are needed.

Arithmetic Coding

Motivation

- Huffman code by encoding the source symbol by symbol can be inefficient
$>$ This can be "solved" through source extension encoding symbol blocks of the source
$>$ But the number of codewords grows exponentially
> And higher order statistics are needed (e.g. 2nd, 3rd, etc. PDFs)
- Underlying difficulty: Huffman requires keeping track of codewords for all possible symbol blocks
Solution
- We need a way to assign a codeword to a particular sequence without having to generate codewords for all possible sequences.

Source coding, Arithmetic Coding

- The idea is based on Shannon's algorithm:

Let an $\operatorname{RV} X=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ with the PDF $p(X)=\left\{p\left(x_{1}\right) \geq p\left(x_{2}\right) \geq \cdots \geq p\left(x_{n}\right)\right\}$
Consider the partitioning of the zero to one interval according the event probabilities into subintervals. Each subinterval closed from the left side (lower limit) and open from the right side (upper limit) corresponds to an event. At the end we have the cumulated probabilities $1=\sum_{i=1}^{n} p\left(x_{i}\right)$

- Rissanen and Langdon "IBM Journal of Research and Development" around 1980.
\checkmark Any rational number of the given interval could be a code for the symbol belongs to that interval.
\checkmark Encode the sequence of source symbols in such way, that the actual partial interval selected by the current symbol is subdivided again according to the symbol PDF and the consecutive symbol select the next partial interval.
\checkmark Select the shortest rational number of the finally resulting partial interval as the codeword for the particular symbol sequence of source.
The size of the finally resulting partial interval will be low, i.e. the interval will be very small, when the particular encoded source symbol sequence has a low probability.
- Our chance to find a short rational number will be low => longer code-word.

Source coding, Arithmetic Coding, Example

Let $X=\{A, B, C, D, E\}$, with $p(X)=\{\mathrm{p}(\mathrm{A})=0.4, \mathrm{p}(\mathrm{B})=0.2, \mathrm{p}(\mathrm{C})=0.2, \mathrm{p}(\mathrm{D})=0.1, \mathrm{p}(\mathrm{E})=0.1\}$
Encode the source symbol sequence „ABCD"

Shortest decimal: 0.221
Shortest binary: 0.0011100011 (in decimal: 0.2216796875)

Arithmetic Coding, Interval extension

If the first fractional digits of the upper and the lower endpoint are identical, they cannot change in the course of the encoding any more. These digits can be sent to the data stream. These parameters of the endpoints have to be shifted accordingly.

Arithmetic Coding, Decoding

Problem: When to stop? Find the variable length code-word for a variable length source symbol sequence.
$>$ Fixed length code-word (e.g. 3 digits) identify different source symbol sequences.
$>$ Fixed length source symbol sequences would be encoded in code-words of different lengths.
Solution: Insert a virtual "STOP" symbol - meaning this has just a probability in the source symbol sequence.
E.g. "EOL", "EOF", "EOT", etc. A
„AAAA" [0.0 .. 0.064)
-> 0 (one digit)
„ABCD" [0.2208 .. 0.114)
-> 221 (three digits)

Source coding, Arithmetic Coding, Example

Let $X=\{A, B, C, " S T O P "\}$, with $p(X)=\{p(A)=1 / 2, p(B)=1 / 4, p(C)=1 / 8, p(" S T O P ")=1 / 8\}$
Encode the source symbol sequence BC "STOP" Decode the received binary: 10110111

sent binary: 10110111

Arithmetic Code vs. Huffman Code

The efficiency of an arithmetic code is always better or at least identical to a Huffman code.

Encode the source symbol sequence „ABCD"

Shortes decimal: 0.221

Compared to Huffman:

Shortest binary: 0.0011100011 (in decimal: 0.2216796875)

