VIATRA QUERY
Incremental evaluation of model queries

Model Driven Systems Development
Lecture 05

Budapest University of Technology and Economics
Department of Measurement and Information Systems

MOTIVATION

Motivation: Early validation of design rules

SystemS|gnaIGroup de5|gn rule (from AUTOSAR)

Mapping ISlgnals to IPDUs

ones AUTOSAR:

!
3

=t [Sana e standardized SW architecture

B &_sigredalrosition A sigredalPosition . .
B 5_igspeedvalus smecwren of the automotive industry
Ed ch_sigEnqineTemperature Jl;—sigEngineTempera -
F3 b sitgton A sgtanton e now supported by modern modeling tools
B ch_sigrpm A sightpm - -
= B3 hstos eI Design Rule/Well-formedness constraint:
ch_status_ccActive skatus_cocAckive

1 e each valid car architecture needs to respect
Postion ofSianals i the selected 1700 e designers are immediately notified if violated
E}%h_status_ccﬁpeedu %h_status_cc.ﬁ.ctive %h_status_ C ha I Ienge :

” e >500 design rules in AUTOSAR tools

5 Fiode 750) 5ystom etor demosysten 53 . e >1 million elements in AUTOSAR models

® tlemert descrtion| 2 & models constantly edited by designers

} etrars, 2 warnings, O others

Description =

= & Errors (4 ikems) /
3 I5ignal of a grouped Svstem Signal should be mapped ta an IPdu along with the I A0 the S\,-'stem Signal Group | demo_swe, arxml lalma frootP,.. AUTOSARP...
@ 1signal of a grouped System Signal should be mapped ko an IPdu along with the ISignal of the System Signal Group | demo_swi, arsxml lalma frootP... AUTOSARP...
@ 15ignal of a grouped System Signal should be mapped ko an IPdu along with the ISignal of the System Signal Group | demo_swi, arxml lalma JrootP... AUTOSARP...
@3 Reference iPduTimingSpecification has invalid mulkiplicices! (Must be in: [1, 1] demao_swe. arxml lalma JrootP... AUTOSARP...

irnl [[P S . T S |

Domain-Specific Modeling Languages

Signal L+ entry Route . Sensor
[actualState : SignalStatekind L+ exit * mul:etleﬁnltgz =
ﬁ\ L | + route + sensar | *
\ «type»
\

Signalstatekind \\ * | + switchPosition + trackElement | *
= 5TOP \\ SwitchPosition TrackElement |
=) FAILURE N | L@ switchState : SwitchStateKind
= GO \ . + connectsTo

\\ * | 4+ switchPosition . |
\\

SwitchStateKind \ _ '
=1 FAILURE S L | + switch
= LEFT "\ Switch Segment
=] RIGHT actual®gate : SwitchStateKind length : Elnt
=] STRAIGHT \

N\

2 emm) E/

Validation of Well-formedness Constraints

Domain-specific

modeling languages pattern switchWOSignal(sw) {
+ connec ted[—.. E SWItCh(SW)
Sisignal | 4 mountedTo Emckﬂer;;"t ‘ \ neg find switchHasSignal(sw);

pattern switchHasSignal(sw) {
= Switch(sw);

- Signal(sig);
Signal.mountedTo(sig, sw);

Model sizes in practice

"= Models with 10M+ elements are common:
o Car industry
o Avionics
o Source code analysis

= Models evolve and change continuously

Application Mod Validation can take hours |
System models 108

Sensor data 10°

Geospatial models 1012

Source: Markus Scheidgen, How Big are Models — An Estimation, 2012.

MODEL QUERIES
AND GRAPH PATTERN MATCHING

What is a model query?

= For a programmer:
o A piece of code that searches for parts of the model

= For the scientist:

o Query = set of constraints that have to be satisfied by
(parts of) the (graph) model

o Result = set of model element tuples that satisfy the
constraints of the query

o Match = bind constraint variables to model elements

" A query engine: Supportiia V) il siGHE)
e all tuples of model elements g,b6

o the definition&execution BRI RN 1[5 oo sl Lilo]y
of model queries e along the match A=a and B=b
' * parameters A,B can be input/ output

&t

L] EGYETEM 1782

Categorization of Query Languages

= Hard to write?

= Your options
o Java (or C/C++, C#, ...)
o Declarative languages (OCL, EMF Query 1-2, ...)

_ Imperative query languages Declarative query languages

Expressive power ® (you write lots of code) © (very concise)
Safety ©O (precise control over what ©®

happens at execution) (unintended side-effects)
Learning curve © (you already know it) @ (may be difficult to learn)
Reusability © (standard OO practices) A (??7?)
Performance ®Q© (considerable manual ©® (depends on various

optimization necessary) factors)

Graph Pattern Matching for Queries

switchPosition
L route: Route
8 routeDefinition

v sensor ::
sensor: Sensor € v

: . H J
: : gun® ';'
: @ ¢““‘ :.
;ﬁ | ﬂ & : om:L=2> G
. straight| =], <%k Bt S u .

= S = (graph morphism)

o CSP:
* Variables: Nodes of L

* Constraints: Edges of L

* Domain values: G

o Complexity: |G| Al

All sensors with a switch that belongs to a route must directly be linked to the same route.

Graph Pattern Matching (Local Search)

switchPosition ; w
0 route: Route sp: SwitchPosition
w routeDefinition 0
Y sensor

sensor: Sensor [€ switch: Switch

-~ = Search Plan:

;ﬁ i «’&J ém ﬁ‘n o Select the first node

to be matched

switch

o Define an ordering on
graph pattern edges

= Search is restarted from
scratch each time

Graph Pattern Matching (Local Search)

switchPosition ; w
0 route: Route sp: SwitchPosition

w routeDefinition switch
A 4 sensor]]
sensor: Sensor |€ e switch: Switch
-
s = Search Tree:

straight 4M 6“ 4&

Graph Pattern Matching (Local Search)

switchPosition ; w
0 route: Route sp: SwitchPosition
“ routeDefinition e
Y sensor

sensor: Sensor [€ switch: Switch

-
e = Alternate Search Tree:

N e (A K] A

switch

/ Local Search
based PM
e Runtime depends
on search plan
e Good search plan:
narrow at root
wide at leaves

INCREMENTALITY IN
QUERIES AND TRANSFORMATIONS

Performance of query evaluation

= Query performance = Execution time
as a function of
o Query complexity
o Model size
o Result set size

= Motivation for incrementality

o Don’t forget previously computed results!

o Models changes are usually small, yet up-to-date
qguery results are needed all the time.

o Incremental evaluation is an essential, but not a well
supported feature.

Incremental Graph Pattern Matching

8 routeDefinition

Y

sensor: Sensor

sensor

<€

switchPosition ; w

switch

%ﬂ straight 4_M

ujt.y

switch: Switch

route _|sp [switch | sensor
rl spl swl

= Main idea: More space to less time
o Cache matches of patterns
o Instantly retrieve match (if valid)
o Update caches upon model changes
o Notify about relevant changes

= Approaches:
o TREAT, LEAPS, RETE, ...

o Tools: VIATRA, GROOVE, MoTE, TCore

Batch vs. Live Query Scenarios

= Batch query
(pull / request-driven):

1.
2.

Designer selects a query

One/All matches are
calculated

Action is applied on
one/all matches

All Steps 1-3 are redone if
model changes

= (Query results obtained
upon designer demand

= Live query
(push / event-driven):
1. Modelis loaded
2. Queries loaded

3. Calculate full match set

Model is changed
5. lterate Steps 3 and 4 until
system is stopped
= Query results are always
available for designer

VIATRA Query: An Open Source Eclipse Project

/ N e N
e Declarative graph query e Incremental evaluation

language e Cache result set

* Transitive closure, e Maintain incrementally
Negative cond., etc. upon model change

e Compositional, reusable
Definition Execution
A

e Derived features,
e On-the-fly validation
e VView generation,

e Works out-of-the-box
with EMF applications

Formerly known as
EMF-INCQUERY

http://eclipse.org/viatra

GRAPH MODEL QUERIES: THE

LANGUAGE

The VIATRA QUERY Language (VQL)

8 routeDefinition

Y

sensor

switchPosition
route: Route

sensor: Sensor €

pattern routeSensor(sensor: Sensor) = {
TrackElement.sensor(switch,sensor);
Switch(switch);
SwitchPosition. switch(sp, switch);
SwitchPosition(sp);
Route.switchPosition(route, sp);
Route(route);
neg find head(route, sensor);

}

pattern head(R, Sen) = {
Route.routeDefinition(R, Sen);

sp: SwitchPosition

switch

Switch: Switch

= VQL: declarative query language

O

© O O O

Attribute constraints

Local + global queries
Compositionality+Reusabilility
Recursion, Negation,

Transitive Closure over
Regular Path Queries

Syntax: DATALOG style

Statecharts metamodel

= Other detailed examples

..{ H TratfichstL

[0.*] visualisations »
[1.1] tophodel [0.*] transitions

[0..%] _-’inte|'Iu|::tT|'a|'|:iti-:||'|s

[0.*] states
! 1 - .
E Visualisation E State]— | EE Transition
- [1..1] start

= red : EBoolean = false = name : EString 1

= green: EBoolean = false ¥ A [1..1] fromState [0..*] outTransition

= yellow : EBoolean = false [1..1] visualisation [::

= : EStri

¢ hame : EString | [1.1] toState -

[0..%] inTransition - _}

E TimedTransition]
= delay : Ent =0

[0.*] fAimedTransitions

E InterruptTransitio n|

:

—_—

= name : EString

\"/o| B Simple queries

// S is a state of a statemachine with name N

pattern state(S:State, N) {
State.name(S,N);

}

// 0ld VIATRA style

pattern state(S,N) {
State(S);
State.name(S,N);

}

// Smart type inference

pattern state(S,N) {
State.name(S,N);

}

// Checks if a state is red

pattern redState(S: State) {
State.visualisation.red(S, true);
State.visualisation.green(S, false);
State.visualisation.yellow(S, false);

pattern state(S:State,
State.name(S,N);
}
// 0ld VIATRA style
pattern state(S,N)
State(S);
State.name(S,N);
}
// Smart type inference

pattern state(S,N) { _ —
ST N e e Attribute navigation

}
// Checks if a state is red

pattern redState(S: State) {
State.visualisation.red(S, true);
State.visualisation.green(S, false);
State.visualisation.yellow(S, false);

L] EGYETEM 1782

\"/o]| B Simple queries

// S is a state of a statemachine with name N Support for built-in
pattern state(S:State, N) { EMF datatypes:

State.name(S,N); Strings, integers, etc.
}

// 01d VIATRA style // T is a timed transition between a
pattern state(S,N) { // from state and a to state with delay D
State(S); pattern timedTransition(T,from,to,D) {

State.name(S,N); Transition.fromState(T,from);

} Transition.toState(T,to0);

// Smart type inference TimedTransition(T);

pattern state(S,N) { TimedTransition.delay(T,D);
State.name(S,N); }

} // T is an interrupt transition between a

// Checks if a state is re // from state and a to state with event E
pattern redState(S: State) pattern interruptTransition(T,from,to,E) {

State.visualisation.re: Transition.fromState(T,from);
State.visualisation.gr Transition.toState(T,to0);
State.visualisation.ye InterruptTransition(T);

} InterruptTransition.name(T,E);

Pattern composition and NAC

Pattern composition / call

sult of Event is non-deterministic in State
nondeterministicState(State, Event) {
find interruptTransition(,State,Tol,Event);
find interruptTransition(_ ,State,To2,Event);
Tol != To2;
}
// No timed transition going out of a State
pattern noTimedTransition(State) {
State(State);
neg find timedTransition(_,State, ,);

Negative application Anonymous variables
condition (see Prolog)

\"/o]| B Transitive closure and disjunction

pattern transition(from,to) {
Transition.fromState(T,from);
Transition.toState(T,to0);

}
pattern reachable(from:State,to:State) {
I (. . .
} orﬁ%om to; (Disjunction
find transition+(from,to); -...__(On pattern level))
}

(. .
___Transitive closure

pattern unreachableState(S:State) { [(CVGCPASEICIUNEIEE)
TrafficDSL.states(ds1,S); '
TrafficDSL.start(dsl,Start);

neg find reachable(Start,S); 1 tii- i

e negative calls do not bind

variables of header parameters

e patterns should be connected by

edges (avoid Cartesian product) ,
T mm ® U O &

MUEGYETEM 1762

-Check expression & Match count

teachersWithMostCourses(S,T)

-
1 I
1 1
1 1
' i
H teachers courses #N | |
1| S:School > T:Teacher >| :Course :
i i
1 1
i NEG - courses | #M E
: Tonchors 21T2: Teacher :Course :
1 1
E check (M > N) i
1 1
1

pattern teachersWithMostCourses(

School : School, Teacher : Teacher) = {
School.teachers(School,Teacher);

neg find moreCourses(Teacher);

Match counting

Ltern moreCourses(Teacher : Teacher) = {
== count find coursesOfTeacher(Teacher, Course);
M == count find coursesOfTeacher(Teacher2, Course2);
Teacher(Teacher2);
Teacher != Teacher2; (

Check expression
for attribute values

._ __(_pure!)

check(N < M);

M I: ‘I’ETEHITB

Overview of VIATRA QUERY Language

= Features of the pattern language

o Works with any (pure) EMF based DSL and application
o Reusability by pattern composition

o Arbitrary recursion, negation

o Generic and parameterized model queries

o Bidirectional navigability of edges / references

o Immediate access to all instances of a type

o Complex change detection

= Benefits

o Fully declarative + Scalable performance

VIATRA QUERY Development Tools

Java - school.instancemodel /BUTE.school - Eclipse - /Users/Isg

1 5 v v

v | B (e

o e e
(A= (S [4w

M Works with most EMF-
s based editors out-of-

=g

=

schoolqueries.eiq £3

Courses of a teacher. ource/fsc

¥ <= 5choal Hapest Ui
- & he-b H
Teacher T teaches in Course C b 4 Yea t e OX 12

* F

/ <= Tead Andras
= pattern coursesOfTeacher(T:Teacher, C:Course) = { < Tead I h

Teacher.courses(T,C); 4:»:: Revea S matc es as ::::rn;

<= Tea . Danial ¥

. selection e

o < Cours e Formal r

< Course
<4 Course Prolog program
4 Course Graph transformatio)

ourse Fault-to
4 Course Pralog p
4 Course Graph tr

* Teacher T teaches a course which is being taught to School

£

pattern classesOfTeacher(T:Teacher, SC:SchoolClass) = {
find coursesOfTeacher(T,C);

Course.schoolClass(C,50); »

\

i3 Query Explorer £3 @Ermr Log B - O

Selection | Parent | List | Tree | Table | Tree with Coly

E Properties &2 =& Prgblems | \()) S¥N Repositories & console Ei':' Synchronize ﬁ Pl

- oo COTCOTOT I [T oo T

Property Value - B school : ' -hw ightThi 1 . h. {Runti Y Details / Filters »
school.courseWithWeightThirty - 1 matc untime)
Courses 4 Course Model-driven s... ee hoolinTheCircl Dng' d n:',rs tch Runtime) \ Parameter \."al.u_e
Homersomed. . < Class D '@ school.inTheCircleOfFriends matches untime T Daniel Varro

8 school.classesOfTeacher - 4 matches (Runtime)
» 8 school.teachers - 4 matches (Runtime)
. . F B school.theOnesWithTheBiggestCircle - 3 matches (Runtime)
Qu e rl e S a re a p p I I e d & P 8 school.teachersOfSchool - 4 matches {Runtime)
85 bpmnl.lonelyActivity - No matches (Runtime)

» 8g school.schools - 1 match (Runtime)
u p d ate S O n —t h e—fl y # 8 school.studentOfSchool - 5 matches (Runtime)

¥ ®g school.teachesTheMostCourses - 1 match (Runtime)

® T=Daniel Varro

» @ school.finalPattern - 2 matches (Runtime)
» 8 school teacherWithoutClass - 1 match (Runtime)

®g bpmnl.badLoopingActivity - No matches (Runtime) Qu e ry EX p I O re r

n® Selected Object: Teacher Daniel Varro

VIATRA QUERY
VALIDATION FRAMEWORK

VIATRA QUERY Validation Framework

= Simple validation engine

o Supports on-the-fly validation through incremental
pattern matching and problem marker management

o Uses VIATRA QUERY graph patterns to specify constraints

= Simulates EMF Validation markers

o To ensure compatibility and easy integration with
existing editors

o Doesn’t use EMF Validation directly

* Execution model is different

Well-formedness rule specification by graph patterns

= \WWFRs: Invariants which must hold at all times

= Specification = set of elementary constraints +
context
o Elementary constraints: Query (pattern)

o Location/context: a model element on which the
problem marker will be placed

= Constraints by graph patterns Match:

o Define a pattern for the “bad case” A violation of
the invariant

 Either directly
* Or by negating the definition of the “good case”

o Assign one of the variables as the location/context

Statechart validation constraint

= “All interrupt names on transitions going out of a single state must
be distinct.”

= Capture the bad case as a query

o There are two outgoing interrupt transitions triggered by the same event

= Add a @constraint annotation to derive an error/warning message

@Constraint(key = {A, Event}, message = ,State $A.name$ handles event
$Event.name$ ambiguously", severity = "warning")
pattern nondeterministicState(A, Event) {

find interruptTransition(_,A,Tol,Event);

find interruptTransition(_,A,To2,Event);

Tol != To2;
}
@Constraint(key = {State}, message = "There should be at most one timed
transition going from a state", severity = "error"
pattern noTimedTransition(State) {
State(State);

neg find timedTransition(_,State,_,_);

Validation lifecycle

= Constraint violations
o Represented by Problem Markers (Problems view)

o Marker text is updated if affected elements are
changed in the model

o Marker removed if violation is no longer present
= Lifecycle

o Editor bound validation (markers removed when
editor is closed)

o Incremental maintenance not practical outside of a
running editor

Validation Ul integration

= A menu item (command) to start the validation
engine

= Generic (part of the VIATRA QUERY Validation
framework)
o GMF editor command
* Appears in all GMF-based editor’s context menu
o Sample Reflective Editor command

* Appears on the toolbar

= Generated

o EMF generated tree editor command

* Appears on the toolbar

CALCULATING DERIVED FEATURES

BY INCREMENTAL QUERIES

Metamodels with Derived Features

/interruptTransitions(A,B): Derived
B is an InterruptTransition Reference
* B is a transition in A

..{ H TratfichstL
0,* visualisati I
[0 visualisations [1.1] tanndel_‘ " [0..*] transitions [0..*] finterfuptTransitions
[0.*] states
! 1 - .
B visualisation B state]— | EE Transition |
- [1..1] start
= red : EBoolean = false = name : EString
= green: EBoolean = false ¥ A [1..1] fromState [0..*] outTransition
= yellow : EBoolean = false [L.1] visualisation [:
= : EStri
¢ hame : EString [1.1] toState - [0..#] inTransition - x

E TimedTransition] E InterruptTransitiun|

(DeriVEd Featu Fes. __‘[= delay : Eint =0 ‘ = name : EString ‘

:

e Values calculated from other elements iransitions
e Defined declaratively as model queries

(e.g. OCL, graph queries)
e Tooling: handle as regular EMF elements)

—_—

Handling Derived Features as Queries

Derived
M EEEREE
DF specification:
aS d query — ,.{ H TratfichstL
alisations l [1..1] topModel " [0.*] transitions [IZI..'*]_-“inte|'Iu|:|tT|'a|'|:iti-:||'|:

@QueryBasedFeature
pattern
interruptTransitions(DSL:TrafficDSL,T) |
{ Eﬁ Transition

TrafficDSL.transitions(DSL,T); o ' —

InterruptTransition(T); [Frevrimnster
} - [0..*] inTransition -

J

Auto-generated

DF handler (Java)

E TimedTransition] E InterruptTransitinn|

:

private IncqueryDerivedF ¢ interruptTransitionsHandler;
public EList<InterruptTiisition> getInterruptTransitions() {
if (interruptTransitionsHandler == null) {
interruptTransitionsHandler = IncqueryFeatureHelper.getIncqueryDerivedFeature(
this, SystemPackageImpl.Literals.DATA _READING_TASK,

"system.queries.InterruptTransitions”, "TrafficDSL", "InterruptTransition",
FeatureKind.MANY_REFERENCE, true, false);}

return interruptTransitionsHandler.getManyReferenceValueAsEList(this);}

=0 = name : EString

—_—

VIATRA VIEWERS

Live abstractions

Complex model Computed overlay
aka. “View”

1 Defined by a query
ltems = SELECT ...

Id Label Prop0 Propl

0 N1 a B

1 N2 o D

Live abstractions

Ul update

Complex model Computed overlay
aka. “View”
Change notification

1 Defined by a query

‘1 ltems = SELECT ..
ﬂ' [¢] Label Prop0 Propl

0 N1 a B

| 1 N2 c D

Query result update 2 A e F

VIATRA Viewers

On-the-fly

abstractions over

1. Model
Modification

the model

-

2. Change Y

Live
Queries

Notifications

3. Continuous,

efficient

Labeled, hierarchic

property graph

Derived ‘
Model

4. Ul updates

synchronization

= Visualize things that are not (directly) present in your model

" Provides an easy-to-use API for integration into your presentation layer

o Eclipse Data Binding

o Simple callbacks

m Query based view annotations

4 Unblink

T “¢ Blink

WX Light event

@Format(color = "#ff0000")
@Item(item = S, 1abe1 - "N")
pattern redState(S: State,N) { .. }

X Polics event

?Mmgxa

¥4 Polife event
4 Yellow

@Item(item = S, label = "N"))
pattern state(S,N) = { .. } 60 ms
@Format(lineColor = "#0000ff") wileaIEED,
@Edge(source = from, target = to, label = "D ms")
pattern timedTransition(T,from,to,D) = { .. }

@Format(lineColor = "#ff0000")
@Edge(source = from, target = to, label = "E event")
pattern interruptTransition(T,from,to,E) = { .. }

What can | do with all this? — query-based live abstractions

Eclipse
technology —

Trees, tables,
Properties EMF.Edit
(JFace viewers)

The real deal:
doesn’t hide abstract syntax

: GEF, GMF, Easy to read and write
Diagrams L.

Graphiti for non-programmers

Textual DSLs Ktext Easy to read and write

for programmers

JFace, Zest, Makes understanding and
yFiles VIATRA Viewers | working with complex models

Your tool! a lot easier

PERFORMANCE BENCHMARKS

The Train Benchmark

= Model validation workload: = Models:
o User edits the model Randomly generated

o Instant validation of Close to real world instances

®

®

well-formedness constraints o Following different metrics

o Model is repaired accordingly o Customized distributions
o

Low number of violations

= Scenario: m Queries:
o Load o Two simple queries
o Check (<2 objects, attributes)
o Edit o Two complex queries
o Re-Check (4-7 joins, negation, etc.)

o Validated match sets

Batch validation Incremental validation

i
Instance Read > Check » ' Edit » ReCheck » v
model

What Tools are Compared?

19Drools
?® Neoy]
@ the graph database i‘ >
ol IncQuery
MHS&)
clarkparsia store

Batch validation runtime (complex queries)

432177.000

181949.503

76601.998

32249.970

13577.460 -

5716.205

2406.562

1013.179

Time [ms]

179.583

75,606

31.830

530478.000

220304.255

91491.004

37995.652

15779.361 -

6553.072

2721.450

1130.202

469.366

Time [ms]

194.925

80.951

Batch Modelvalidation (x,y:logscale)

426,555 -

Batch execution is dominated by
* l[oading the model

* initializing the

indexers

/

on (x,y:logscale)

’g’_ — = -
i |
[EMF-IncQuery: 2.8 million nodes +

11.2 million edges

1

—
L

)____-)/

88k nodes +
347k edges

[

= 0.7 million nodes +
ko

2.8 million edges

Tools
=t Allegro Graph
&= Drools
= Eclipse OCL+IA
= 4store
9|é EMF-IncQuery
Jawva Refactored
= Pellet
& Neod)
Eclipse OCL
= Sesame
MySQL
&= Stardog
OpenVirtuoso

Tools
= Allegro Graph
= Drools
= Eclipse OCL+1A
= 4store
34 EMF-IncQuery
Java Refactorec
< Neodj
Eclipse OCL
#~ Stardog
OpenVirtuoso

Re-validation time (complex queries)

Incremental Transformation and Validation (x,y:logscale)

4536.000
in] /
2120.055 d
660,560 //3// //
463.122 E/ . . : | | = ! . _ {
216.456 }""""—/4/ = 4_,__.-EH/L: > . Ec,;lfegro Graph
- 1 — #= Drools
101100 — = / N Eclip;e OCL+1A
- 47.284 it = e 7 | . = dstore
E 22100 — B ove reracrrad
E 10.329 /‘r— , g?lfij -
4.828 by clipse
B co— — A = Sesame
‘ Incremental Transformation and Validation (x,y:logscale) . HgﬂySSL
| tardog
5058.000 r OpenVirtuoso
2170.625 /’_’%{///t:/]
931.517 H = i
399.758 . e
171.555 5
. i EMF-IncQuery:
i o nc .
5 N - Characteristic * close to zero response time
E) .
T e - difference * up to models with
= Qe
2457 . (note the log scale) 14 million elements
1.072 ,
0.460 . '
0.197 y /(—__/—’) |
0.085 S |
0.036 / . .
0016 ! ® 0 9]0
O 2dee

http://incquery.net/publications/trainbenchmark for more details

Memory [kByte]

1e+07 |

1e+06 |

100000 |

AllTestCaseAvg Memory Usage

Incremental engines impose
a linear memory
consumption overhead
INCQUERY’S overhead is only
slightly larger than OCL-IA

BUT: Most standard JVMs start
having severe performance
issues with large models

Java —— Drools —a— Eclispe OCL -

EMF-IncQuery —w— OCL Impact Analysis —s—

418k

CONCLUSIONS

Selected Applications of VIATRA QUERY

-
e Complex traceability
e Query driven views
e Abstract models by

derived objects

[Foolchain for

MA configs

-

e Experiments on open

e Local search vs.

source Java projects

Incremental vs.
Native Java code

Detection of bad 48 o
code smells - i

(
e Connect to Matlab

Simulink model
e Export: Matlab2EMF
e Change model in EMF
e Re-import:
EMF2Matlab

ATLAB-EMF

ridge

f
e Live models

f/_
e Rules for operations

e Complex structural
constraints (as GP)

e Hints and guidance

e Potentially infinite
state space

Design Space
Exploration

rf
e |temis (developer)

(refreshed 25
frame/s)

e Complex event
processing

Gesture

recognition

e Embraer

e Thales

e ThyssenKrupp
e CERN

