Űrkommunikáció Space Communication 2023/6.

Channel Coding

Error correction coding

Channel encoding rule

$$
\Omega(\overline{\boldsymbol{u}})=\overline{\boldsymbol{c}}
$$

Decoding in 2 steps

$$
\begin{array}{ll}
\mathrm{D}(\overline{\boldsymbol{v}})=\hat{\overline{\boldsymbol{c}}} & \text { 1. Decision } \\
\Omega^{-1}(\hat{\overline{\boldsymbol{c}}})=\widehat{\overline{\boldsymbol{u}}} & \text { 2. Invers operation }
\end{array}
$$

Digital transmission channel

Input X and output Y are discrete random variables

How many information can we gather about X by observing Y ?

- a-posteriori Entropy
- Mutual Information

Definition: a-posteriori Entropy [bit/symbol, Shannon/symbol]

$$
H(X \mid Y)=E\{I(x \mid y)\}=\sum_{x} \sum_{y} p(x, y) l d \frac{1}{p(x \mid y)}
$$

Digital transmission channel

Definition: Mutual Information of two random events

$$
\mathrm{I}\left(x_{i} ; y_{j}\right)=l d \frac{p\left(x_{i} \mid y_{j}\right)}{p\left(x_{i}\right)}=l d \frac{p\left(y_{j} \mid x_{i}\right)}{p\left(y_{j}\right)}[\text { bit, Shannon }]
$$

Using Bayes's theorem:

$$
l d \frac{p\left(x_{i} \mid y_{j}\right)}{p\left(x_{i}\right)}=l d \frac{p\left(x_{i} \mid y_{j}\right) p\left(y_{j}\right)}{p\left(x_{i}\right) p\left(y_{j}\right)}=l d \frac{p\left(x_{i}, y_{j}\right)}{p\left(x_{i}\right) p\left(y_{j}\right)}=l d \frac{p\left(y_{j} \mid x_{i}\right) p\left(x_{i}\right)}{p\left(x_{i}\right) p\left(y_{j}\right)}=l d \frac{p\left(y_{j} \mid x_{i}\right)}{p\left(y_{j}\right)}
$$

Definition: Average mutual information [bit/symbol], [Shannon/symbol]

$$
\begin{aligned}
& \quad \mathrm{I}(X ; Y)=E\left\{ı\left(x_{i} ; y_{j}\right)\right\}=\sum_{x} \sum_{y} p\left(x_{i}, y_{j}\right) \mid\left(x_{i} ; y_{j}\right)= \\
& =\sum_{x} \sum_{y} p\left(x_{i}, y_{j}\right) l d \frac{p\left(x_{i}, y_{j}\right)}{p\left(x_{i}\right) p\left(y_{j}\right)}=D(p(x, y) \| p(x) \cdot p(y))= \\
& =\sum_{x} \sum_{y} p\left(x_{i}, y_{j}\right) l d \frac{p\left(x_{i} \mid y_{j}\right)}{p\left(x_{i}\right)}=\sum_{x} \sum_{y} p\left(x_{i}, y_{j}\right)\left[l d \frac{1}{p\left(x_{i}\right)}-l d \frac{1}{p\left(x_{i} \mid y_{j}\right)}\right]= \\
& =\sum_{x} \sum_{y} p\left(x_{i}, y_{j}\right) l d \frac{1}{p\left(x_{i}\right)}-\sum_{x} \sum_{y} p\left(x_{i}, y_{j}\right) l d \frac{1}{p\left(x_{i} \mid y_{j}\right)}= \\
& =\quad \mathrm{H}(\mathrm{X}) \quad \mathrm{H}(\mathrm{X} \mid \mathrm{Y})
\end{aligned}
$$

Channel Capacity

$$
\mathrm{I}(X ; Y)=H(X)-H(X \mid Y)=H(Y)-H(Y \mid X)=D(p(x, y) \| p(x) \cdot p(y))
$$

Definition: Channel capacity $\left[\frac{\text { Shannon }}{\text { channel use }}\right],\left[\frac{\text { bit }}{\text { channel use }}\right]$, e.g. $[\mathrm{bit} / \mathrm{sec}]$

$$
\begin{aligned}
\mathrm{C} & =\max _{p(x)} \mathrm{I}(X ; Y)= \\
& =\max _{p(x)}[H(X)-H(X \mid Y)]= \\
& =\max _{p(x)}[H(Y)-H(Y \mid \mathrm{X})]= \\
& =\max _{p(x)} D\left(p\left(x_{i}, y_{j}\right) \| p\left(x_{i}\right) \cdot p\left(y_{j}\right)\right)
\end{aligned}
$$

Channel capacity is bounded

$$
0 \leq \mathrm{C} \leq \max _{p(x)}[H(X)]=H_{0}=l d n
$$

Forrás: ww.techzibits.com
X and Y are independent:
$H(X)=H(X \mid Y)$

Error free channel: $y_{i}=x_{i}$
$\mathrm{p}\left(x_{i} \mid y_{i}\right)=1$
$H(X \mid Y)=0$

Ideal Binary Channel

- Ideal: No parameter, that is only one parameter: error probability $p=0$
- Binary in- and output:
$X=\left\{x_{1}, x_{2}\right\}$ e.g: $\{0,1\} \quad Y=\left\{y_{1}, y_{2}\right\}$ e.g: $\{0,1\}$

$$
\begin{aligned}
& \mathrm{p}\left(x_{1}\right) 0 \xrightarrow{1-\mathrm{p}} 0 \mathrm{p}\left(y_{1}\right) \\
& \mathrm{p}\left(x_{2}\right) 1 \xrightarrow[1-\mathrm{p}]{ } \longrightarrow \mathrm{p}\left(y_{2}\right)
\end{aligned}
$$

- How much is the capacity?

Starting form here:

$$
C_{\text {ideal binary }}(\mathrm{p}=0)=\max _{p(x)}[H(X)-H(X \mid \mathrm{Y})]=H_{0}(X)=l d 2=1\left[\frac{\text { bit }}{\text { channel use }}\right]
$$

Capacity of BSC

BSC: Binary Symmetric Channel

- One parameter: error probability p
- Binary in- and output:
$X=\left\{x_{1}, x_{2}\right\}$ pl.: $\{0,1\} \quad \mathrm{Y}=\left\{y_{1}, y_{2}\right\}$ pl.: $\{0,1\}$
- Symmetric:

- How much is the capacity?

Starting now form here:

$$
C_{B S C}(\mathrm{p})=\max _{p(x)}[H(Y)-H(Y \mid \mathrm{X})]
$$

Capacity of BSC

$$
C_{B S C}(\mathrm{p})=\max _{p(x)}[H(Y)-H(Y \mid \mathrm{X})] \quad[\text { bit } / \text { channel use }]
$$

- $H(Y)$ maximal if Y is uniformly distributed: $p\left(y_{1}\right)=p\left(y_{2}\right)=1 / 2$

And then $\mathrm{H}(\mathrm{Y})=1$ [bit/binary symbol]

- In the case of BSC the output is uniformly distributed for example when the input is a such:

$$
\begin{aligned}
& \mathrm{p}\left(x_{1}\right)=\mathrm{p}\left(x_{2}\right)=\frac{1}{2}, \text { then: } \\
& \mathrm{p}\left(y_{1}\right)=\mathrm{p}\left(x_{1}\right) \cdot(1-p)+\mathrm{p}\left(x_{2}\right) \cdot p=\mathrm{p}\left(x_{1}\right)-\mathrm{p}\left(x_{1}\right) \cdot p+\left(1-\mathrm{p}\left(x_{1}\right)\right) \cdot p= \\
& =\mathrm{p}\left(x_{1}\right)-2 \cdot \mathrm{p}\left(x_{1}\right) \cdot p+p=\mathrm{p}\left(x_{1}\right)-p+p=1 / 2
\end{aligned}
$$

- $\mathrm{H}(\mathrm{Y} \mid \mathrm{X})=\sum_{x} \sum_{y} p(x, y) l d \frac{1}{p(y \mid x)}=\sum_{x} \sum_{y} p(x) p(y \mid x) l d \frac{1}{p(y \mid x)}=$

$$
=\sum_{x} p(x) \sum_{y} p(y \mid x) l d \frac{1}{p(y \mid x)}
$$

$$
\mathrm{p}\left(x_{1}\right) \cdot\left[(1-p) \cdot l d \frac{1}{(1-p)}+p \cdot l d \frac{1}{p}\right]+\mathrm{p}\left(x_{2}\right) \cdot\left[p \cdot l d \frac{1}{p}+(1-p) \cdot l d \frac{1}{(1-p)}\right]=
$$

$$
\underbrace{\left(\mathrm{p}\left(x_{1}\right)+\mathrm{p}\left(x_{2}\right)\right)} \cdot \underbrace{\left[(1-p) \cdot l d \frac{1}{(1-p)}+p \cdot l d \frac{1}{p}\right]}
$$

$h(p)$ binary entropy function

Capacity of BSC

$$
C_{B S C}(\mathrm{p})=\max _{p(x)}[H(Y)-H(Y \mid \mathrm{X})]=1-h(p) \quad[\text { bit/channel use }]
$$

Shannon's Channel coding theorem, 1948

- If $\mathrm{H}(\mathrm{X})<\mathrm{C}$ then exists $\Omega(\mathrm{X})=\tilde{X}$ transformation (coding, modulation, method) so that $P_{e} \rightarrow 0$ until $\mathrm{H}(\widetilde{X})<\mathrm{C}$ holds.
- An other formulation (case of Block coding):

A vector (block) of K message symbols extended to a vector of N code symbols $P_{e} \rightarrow 0$, until $\lim _{K \rightarrow \infty}{ }^{K} /{ }_{N}<C$ remains valid.

Coding, Construction of codes

Channel encoding rule

$$
\Omega(\overline{\boldsymbol{u}})=\overline{\boldsymbol{c}}
$$

Decoding in 2 steps

$$
\begin{array}{ll}
\mathrm{D}(\overline{\boldsymbol{v}})=\hat{\overline{\boldsymbol{c}}} & \text { 1. Decision } \\
\Omega^{-1}(\hat{\boldsymbol{c}})=\widehat{\overline{\boldsymbol{u}}} & \text { 2. Invers operation }
\end{array}
$$

Coding rule: Mutually obvious transformation of Message space into Code space

Coding, Construction of codes

Message space: $\quad \bar{U}=\left\{\bar{u}_{i}\right\}$
Message vector: $\overline{u_{i}}=\left[u_{1}, u_{2}, \ldots, u_{k}, \ldots, u_{K}\right]$
Message symbol: $\quad u_{k}=\{0,1,2, \ldots, r-1\}$
Dimension K, r-ary vector space
r^{K} possible message vector

Code space: $\quad \bar{C}=\left\{\bar{c}_{i}\right\}$
Code vector: $\overline{c_{i}}=\left[c_{1}, c_{2}, \ldots, c_{n}, \ldots, c_{N}\right]$
Code symbol: $\quad c_{n}=\{0,1,2, \ldots, q-1\}$
Dimension N, q-ary vector space
q^{N} possible code vector

Decoding

Error vector: $\bar{e}=\left[e_{1}, e_{2}, \ldots, e_{n}, \ldots, e_{N}\right]$
Example: two error events: $\bar{e}=\left[0,0, \ldots, e_{i}, \ldots, e_{j}, \ldots, 0, \ldots, 0\right]$ if the events happens at position i and j , and the symbol values of the events are e_{i} and e_{j}.
Four unknown (positions and values) should be determined.
Example for ,,deleted" error type: $\overline{e_{d e l}}=\left[0,0, \ldots, *_{j}, \ldots, 0, \ldots, 0\right]$.
The position is known.
Received vector: $\bar{v}=\bar{c}+\bar{e}=\left[v_{1}, v_{2}, \ldots, v_{n}, \ldots, v_{N}\right]=\left[c_{1}+e_{1}, \ldots, c_{n}+e_{n}, \ldots, c_{N}+e_{N}\right]$

Based on the received vector: \bar{v} Decoding in 2 steps

1. Decision $\mathrm{D}(\overline{\boldsymbol{v}})=\hat{\overline{\boldsymbol{c}}} \quad$ 2. Invers operation $\Omega^{-1}(\hat{\overline{\boldsymbol{c}}})=\widehat{\overline{\boldsymbol{u}}}$

- Trivial: $\bar{v}=\overline{c_{i}}$
- Unsolvable: $\bar{v}=\overline{c_{j}} \neq \overline{c_{i}}$ that we sent
- Solvable with the possibility of wrong decision: $\bar{v} \neq \overline{c_{i}} \forall i$

Trivial

Unsolvable

Solvable with the possibility of wrong decision

Coding, Construction of codes

Definitions for calculation in vector space:

- Hamming distance: $\quad d\left(\overline{c_{i}}, \overline{c_{j}}\right)=\sum_{n=1}^{N} \chi\left(c_{i_{n}} \neq c_{j_{n}}\right)$
- Code distance:

$$
d_{\min }=\min _{i, j \neq i}\left\{d\left(\overline{c_{i}}, \overline{c_{j}}\right)\right\}
$$

- Code weight: $w=\min _{i, \bar{c}_{i} \neq 0}\left\{\sum_{n=1}^{N} \chi\left(c_{i_{n}} \neq 0\right)\right\}$

Type of errors:

- Number of detectable error: $t_{\text {det }}<d_{\min }, t_{\text {det }_{\max }}=d_{\text {min }}-1$
- Number of correctable errors: $t_{\text {corr }}=\left\lfloor\frac{d_{\text {min }}-1}{2}\right\rfloor$
- Number of „deleted" type errors: $t_{\text {del }}=d_{\text {min }}-1$

Basic types of Channel coding (error correction coding)

- Block codes (N,K,q): Hamming, Cyclic, Reed-Solomon, etc.
- Convolutional coding (Trellis codes, Viterbi coding/decoding)

Let us start the encoding heuristically
($\mathrm{N}=3, \mathrm{~K}=2, \mathrm{q}=\mathrm{r}=2$) binary message and vector space, +1 redundant binary symbol

Construction heuristically

($\mathrm{N}=3, \mathrm{~K}=2, \mathrm{q}=\mathrm{r}=2$) binary message and vector space, +1 redundant binary symbol

Although mutually obvious transformation, not appropriate, because the distances remaining the same

Construction heuristically

($\mathrm{N}=3, \mathrm{~K}=2, \mathrm{q}=\mathrm{r}=2$) binary message and vector space, +1 redundant binary symbol

Mutually obvious transformation, appropriate, because increasing distances, dmin=2 (Parity check coding, cyclic coding heuristically!)

\left.| Message vector | Code vector | | |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 0 | | | |
| 1 | 0 | 1 | 0 |
| 0 | 1 | | |
| 0 | 1 | 0 | 1 |
| 1 | | | |
| 1 | 1 | 1 | 1 |$\right)$

Construction heuristically

($\mathrm{N}=3, \mathrm{~K}=2, \mathrm{q}=\mathrm{r}=2$) binary message and vector space, +1 redundant binary symbol

Vector set represented by blue dots could detect one error because mutually obvious and increasing distances, $d \min =2$, however, they are not a linear subspace (see later) of the vector space, therefore not appropriate for calculations.
(cyclic but not parity check vector set!)

Another	Message vector	Code vector		
transformation	0	0	1	0
	1	0	0	0
	0	1	0	1
	1	1	1	1
	1		1	

Another	Message vector	Code vector			
transformation	0	0	1	0	0
	1	0	0	0	1
	0	1	0	1	0
	1	1	1	1	1

Example: correcting one „delete" error, red also

Algebraic code construction rules

Singleton bound for ($\mathrm{N}, \mathrm{K}, \mathrm{q}=\mathrm{r}$) block codes: $M \leq q^{N-d_{\min }+1}$
The number of possible code vectors (therefore message vectors) related to the code attributes $d_{\text {min }}, \mathrm{N}$ and q .
Proof:
K dimensional q-ary space: $M \leq q^{K}$, max. $M=q^{K} \Rightarrow d_{\text {min }}=1$,
Extended to N dimensional: $\mathrm{K}->\mathrm{N}=>q^{N-K}$ times more point, max. $d_{\min }=N-K+1$

$$
d_{\min } \leq \mathrm{N}-\mathrm{K}+1, \quad K \leq N-d_{\min }+1, \quad M \leq q^{K} \leq q^{N-d_{\min }+1}
$$

MDS code (Maximum Distance Separable): $M=q^{N-d_{\min }+1}$
Or equivalently: $K=N-d_{\min }+1$ or $d_{\min }=N-K+1$
MDS example : $(N=3, K=2, q=2), d_{\text {min }}=2$

Code construction rules cont.

Hamming bound (sphere-packing bound): $t_{\text {corr }}$ required, ($\mathrm{N}, \mathrm{K}, \mathrm{q}=\mathrm{r}$)?
Determine the number of points in a decision subspace around a valid code vector; the size of decision subspace,
needed for correction of $t_{\text {corr }}=\left\lfloor\frac{d_{\min }-1}{2}\right\rfloor$ errors
$1+N \cdot(q-1)+\binom{N}{2} \cdot(q-1)^{2}+\cdots+\binom{N}{t_{\text {corr }}} \cdot(q-1)^{t_{c o r r}}=\sum_{i=0}^{t_{\text {corr }}}\binom{N}{i} \cdot(q-1)^{i}$ $\max . M=q^{K}$
$q^{K} \cdot \sum_{i=0}^{t_{\text {corr }}}\binom{N}{i} \cdot(q-1)^{i} \leq q^{N} ;$
Hamming bound:
$\sum_{i=0}^{t_{\text {corr }}}\binom{N}{i} \cdot(q-1)^{i} \leq q^{N-K}$
Binary case: $\sum_{i=0}^{t_{c o r r}}\binom{N}{i} \leq 2^{N-K}$

Perfect code:

$$
\sum_{i=0}^{t_{c o r r}}\binom{N}{i} \cdot(q-1)^{i}=q^{N-K}
$$

Code construction rules cont.

Hamming bound (sphere-packing bound): $t_{\text {corr }}$ required, $(\mathrm{N}, \mathrm{K}, \mathrm{q}=\mathrm{r})$?
HOWEVER: Not only the size but also the form of the decision subspaces counts.
Example: Perfect; $t_{\text {corr }}=\left\lfloor\frac{d_{\text {min }}-1}{2}\right\rfloor=2 ; q=2$;

$$
\begin{gathered}
1+N \cdot(q-1)+\binom{N}{2} \cdot(q-1)^{2}=q^{N-K} \\
1+N+\frac{N \cdot(N-1)}{2}=2^{N-K}
\end{gathered}
$$

$\mathrm{N}=90$ and $\mathrm{K}=78$ solves the equation, however, doesn't exists in a 90 dimensional space $302231454903657293676544\left(=2^{78}\right)$ portion of disjoint decision subspaces so that every one vector of the space (2^{90} piece) is part of one and only one decision subspace.
The Hamming bound is just a bound for the size.

Examples: Hamming bound, perfect code

Hamming code ($\mathrm{N}, \mathrm{K}, \mathrm{q}$): Perfect code, that capable to correct maximum one error, and detect max. two errors. In the practice mostly binary, however non-binary Hamming codes also exists.
$t_{\text {corr }}=\left\lfloor\frac{d_{\text {min }}-1}{2}\right\rfloor=1 ; \Rightarrow \quad d_{\text {min }} \geq 3$
For $t_{\text {corr }}=1$ the Hamming bound is performed perfectly with the ($\mathrm{N}, \mathrm{K}, \mathrm{q}$) set $\forall m \geq 2$

$$
\left(N=\frac{q^{m}-1}{q-1}, K=N-m, q\right) \quad(m=1=>K=0!!!)
$$

Proof:
$1+N \cdot(q-1)=q^{N-K}=q^{m} ; \quad N \cdot(q-1)=q^{m}-1 ; \quad N=\frac{q^{m}-1}{q-1}$

Example: MDS, perfect code

Hamming ($N=3, K=1, q=r=2$) code

MDS: $d_{\text {min }}=N-K+1=3 ; \quad t_{c o r r}=\left\lfloor\frac{d_{\text {min }}-1}{2}\right\rfloor=1$
Perfect: $1+N \cdot(q-1)=q^{N-K}=1+3=2^{2}=4$ elements in a decision subspace

Message: 0 or 1
Code vector: 000 or 111
That is a simple repetition coding!

