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Channel Coding
Error correction coding
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Channel encoding rule Decoding in 2 steps



Digital transmission channel

Black Box

  

X Y

Input X and output Y are discrete random variables

How many information can we gather about X by observing Y?
• a-posteriori Entropy
• Mutual Information

Definition: a-posteriori Entropy [bit/symbol, Shannon/symbol]
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Definition: Mutual Information of two random events
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Using Bayes’s theorem:

Definition: Average mutual information
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Digital transmission channel



Channel Capacity

Definition: Channel capacity
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Channel capacity is bounded
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X and Y are independent:
H(X)=H(X|Y)

Error free channel: 
p( | ) = 1
H(X|Y) =0

Forrás: ww.techzibits.com



Ideal Binary Channel
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• How much is the capacity? 
Starting form here:

 (p=0) = 
( )  

• Binary in- and output:
e.g: e.g: 

• Ideal: No parameter, that is only one parameter: error probability p=0



Capacity of BSC
BSC: Binary Symmetric Channel

• One parameter: error probability p

• Binary in- and output:
pl.: pl.: 

• Symmetric:
1-p
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• How much is the capacity? 
Starting now form here:
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[bit/channel use]

• H(Y) maximal if Y is uniformly distributed: p( p(
And then H(Y)=1 [bit/binary symbol]

• In the case of BSC the output is uniformly distributed for example when the input 
is a such:
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1 h(p) binary entropy function

Capacity of BSC
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Capacity of BSC



Shannon’s Channel coding theorem, 1948

• If H(X) < C then exists Ω (X)= transformation (coding, modulation, method) so 
that until H ) < C holds.

• An other formulation (case of Block coding):
A vector (block) of K message symbols extended to a vector of N code symbols 

, until  
→

remains valid.
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Coding, Construction of codes

Error vector

Coding rule: Mutually obvious transformation of Message space into Code space
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1. Decision

2. Invers operation

Channel encoding rule Decoding in 2 steps



Message space:

Message vector: 

Message symbol:

Dimension K, r-ary vector space

possible message vector

Code space:

Code vector: 

Code symbol:

Dimension N, q-ary vector space

possible code vector
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Coding, Construction of codes



Decoding

• Trivial: 

• Unsolvable: that we sent

• Solvable with the possibility of wrong decision: 

Error vector: 

Example: two error events:  if the events happens 
at position i and j, and the symbol values of the events are and 
Four unknown (positions and values) should be determined.
Example for „deleted” error type: . 
The position is known.

Received vector: 

1. Decision 2. Invers operation

Based on the received vector: Decoding in 2 steps

 



Trivial
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Unsolvable
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Solvable with the possibility of 
wrong decision
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Coding, Construction of codes
Definitions for calculation in vector space:

• Hamming distance:

• Code distance:
,

• Code weight: 
,

Type of errors:

• Number of detectable error: , 

• Number of correctable errors: 

• Number of „deleted” type errors: 

1-p-q
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Basic types of Channel coding 
(error correction coding)

0 1

(N=3, K=2, q=r=2) binary message and vector space, +1 redundant binary symbol
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• Block codes (N,K,q): Hamming, Cyclic, Reed-Solomon, etc. 

• Convolutional coding (Trellis codes, Viterbi coding/decoding) 

Let us start the encoding heuristically



Construction heuristically
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(N=3, K=2, q=r=2) binary message and vector space, +1 redundant binary symbol
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Mutually obvious transformation, appropriate, because increasing distances, dmin=2
(Parity check coding, cyclic coding heuristically!)

Message vector Code vector

Construction heuristically
(N=3, K=2, q=r=2) binary message and vector space, +1 redundant binary symbol
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Vector set represented by blue dots could detect one error because mutually obvious
and increasing distances, dmin=2, however, they are not a linear subspace (see later) of 
the vector space, therefore not appropriate for calculations.
(cyclic but not parity check vector set!)

Example: correcting one
Another Message vector Code vector „delete” error, red also
transformation 

Construction heuristically
(N=3, K=2, q=r=2) binary message and vector space, +1 redundant binary symbol



Algebraic code construction rules
Singleton bound for (N,K,q=r) block codes: 
The number of possible code vectors (therefore message vectors) related to the code 
attributes  , N and q.
Proof:
K dimensional q-ary space: , max. => ,
Extended to N dimensional: K->N => times more point, max. 

N-K+1, ,

MDS code (Maximum Distance Separable): 
Or equivalently: or 

MDS example : (N=3,K=2,q=2), 
possible messages maximum
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Code construction rules cont.
Hamming bound (sphere-packing bound): required, (N,K,q=r)?

Determine the number of points in a decision subspace around a valid
code vector; the size of decision subspace,
needed for correction of errors

max. 

;

Hamming bound:

Binary case: 

Perfect code:
0 1 2 q-1
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Hamming bound (sphere-packing bound): required, (N,K,q=r)?

HOWEVER: Not only the size but also the form of the decision subspaces counts.

Example: Perfect; 

N=90 and K=78 solves the equation, however, doesn’t exists in a 90 dimensional 
space 302231454903657293676544 (= portion of disjoint decision subspaces 
so that every one vector of the space ( piece) is part of one and only one
decision subspace. 
The Hamming bound is just a bound for the size.

=> =>

Code construction rules cont.



Hamming code (N,K,q): Perfect code, that capable to correct maximum one error, and 
detect max. two errors. In the practice mostly binary, however non-binary Hamming 
codes also exists.

;  =>    

For the Hamming bound is performed perfectly with the (N,K,q) set 

, (m=1 => K=0 !!!)

Proof:

;

Examples: Hamming bound, perfect code

q=2 q=3 q=5

m N K
= /

N K
= /

N K
= /

2 3 1 1/3 4 2 1/2 6 4 2/3

3 7 4 0,57 13 10 0,77 31 28 0,9

4 15 11 0,73 40 36 0,9 156 152 0,97

5 31 26 0,84 121 116 0,96

MDS =>



Example: MDS, perfect code
Hamming (N=3, K=1, q=r=2) code 

MDS: ; 
Perfect: elements in a decision subspace 

Message: 0 or 1
Code vector: 000 or 111
That is a simple repetition coding!
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