
Datasheet for the MICRO Processor

B. Rasmus Anthin

April 26, 2000

1 General Description

The MICRO processor is a 8-bit processor with a 8-bit address bus. The CPU has a total of 138
instructions. The instructions has the following addressing modes:

• inherent

• immediate

• absolute

• relative

The inherent instructions have no following operands, all information about the operation comes
with the instruction itself. Examples of inherent instructions are INCA, CLRA, ROLA and RTS.
The immediate instructions have one operand which contents are often used as pure data for the
operation to be performed. Examples of immediate instuctions are LDA #Data, ADDA #Data
and ORA #Data. The absolute instructions have one operand which contains the address in which
the operation should give it result to. Examples of absolute instructions are STA Adr, SUBA Adr
and ANDA Adr. The relative instructions have one operand and acts somewhat similar to the
absolute instructions, but instead the operand tells the offset from the value in the PC-reg in which
address the result should be put in the memory or from which address data should be taken from
the memory to be used by the operation.

The CPU contains mainly two parts who of which can be divided into several subparts:

control unit This is the “brain” of the CPU who controls the actions within the datapath and
external units. It has two external signals which is used to interrupt the execution; it is
the RESET signal and the IRQ signal. The RESET signal breaks the execution completely
and starts it all over again. The IRQ signal interrupts the execution and jumps to another
program and then jumps back when finished.

The countrol unit can be made in two ways:

static-coupled control unit. This is made by a state counter and a net of logical gates
divided into different parts, each for every flag or controlsignal. This CPU uses this
variant of control unit.

micro-programmable control unit. This is maintained with a micromemory containing all
the CPU-instructions in separate areas. Each address corresponds to its instructions
order-number. A micro-counter keeps track of the instructions executed within the
micro-memory. This method is very rarely used today, but is useful when one wants to
change the CPU’s instruction-set.

data path This is the “body” of the microprocessor. The data path could be likened as a worker
and the control unit as its boss who says what the data path should do with the data input.
The data path contains following parts:

1

1 GENERAL DESCRIPTION 2

accumulators are referred to as registers. MICRO has two general registers, A and B.
The registers are like containers for data. Alternatively, you could call them temporary
variables.

ALU are the “hart” of the CPU. This part performs all the computations in the processor
and therefore also in the computer! ALU is short for Arithmetic Logic Unit.

CC-register is the Condition Code register. This register collects the flags from the ALU.
The flags are used by the control unit to decide when a branch or a jump to another
address should be performed. There are a total of five flags which are:

• Half carry. This is the carry bit between the two nibbles in a byte.
• Negative. This flag indicates — when using 2nd complementary form — whether

the result from the ALU is negative or not.
• Zero. This flag indicates wheter the result from the ALU is zero or not.
• OVerflow. This flag indicates — when using 2nd complementary form — whether

the result has wrong sign or not. E.g. if 127 + 40 = −167 or if −100− 30 = 130.
• Carry. This flag indicates carry from the most significant bit in the resulting data

byte when addition or subtraction has been performed.

X-register is the index register which is frequently used when creating lists of variables in
the memory.

S-register is a counter which keeps track of the address in the memory before the CPU
performs a jump to another memory address.

PC is the Program Counter. The PC keeps track of the current memory address containing
the current instruction to be executed.

MA-register is the Memory Adress register which ports out the address to address bus
(to the memory) from the data bus.

2 INSTRUCTION SET 3

2 Instruction Set

This section deals with the instructions the MICRO processor has. They are more than enough
to make complex programs such as controlling programs for external devices or games like snake
for example.

2.1 Symbols

The symbols explained here are used throughout this section. The convetions are:

$number number is in hex format.
%number number is in binary format.
number number is in decimal format.
OP Operationcode for an instruction in hex.
Number of bytes an instruction uses. Is also used to tell that the operand is pure data.
∼ Number of clock cycles used to execute (and fetch) an instruction.
A Data in register A.
A′ Data in register A is bitwise complemented.
M(Adr) Data in memory at address Adr.
M ′(Adr) Data in memory at address Adr is bitwise complemented.
H Halfcarry flag.
N Sign flag.
Z Zero flag.
V Overflow flag.
C Carry flag.
a “Affected”. Is used to show if a flag is affected by the operation.
• “Not affected”. The opposite to a.
0 Set to zero. Usually used to show that a flag is set to zero by the operation.
– Undefined value. Used to show that a flag gets a random value from the operation.
CC Condition Code. Contents in the flag-register, that is all flag-values.
n Offset. Used in relative addressing modes.
EA Effective Adress.
Offs Offset from current adress.

2 INSTRUCTION SET 4

2.2 No Operation

Operation type Name OP # ∼ RTN H N Z V C
No operation NOP 00 1 3 – • • • • •

2.3 Simple Data Transfer Operations

Operation type Name OP # ∼ RTN H N Z V C
Transfer TFR A,B 01 1 3 A → B • • • • •

TFR B,A 02 1 3 B → A • • • • •
TFR A,CC 03 1 3 A → CC a a a a a
TFR CC,A 04 1 3 CC → A • • • • •
TFR X,S 05 1 3 X → S • • • • •
TFR S,X 06 1 3 S → X • • • • •

Exchange EXG A,B 07 1 5 A ↔ B • • • • •
EXG A,CC 08 1 5 A ↔ CC a a a a a
EXG B,CC 09 1 5 B ↔ CC a a a a a
EXG X,S 0A 1 5 X ↔ S • • • • •

Load LDA Adr 0B 2 5 M(Adr) → A • • • • •
LDB Adr 0C 2 5 M(Adr) → B • • • • •
LDX Adr 0D 2 5 M(Adr) → X • • • • •
LDS Adr 0E 2 5 M(Adr) → S • • • • •
LDA #Data 0F 2 4 Data → A • • • • •
LDB #Data 10 2 4 Data → B • • • • •
LDX #Data 11 2 4 Data → X • • • • •
LDS #Data 12 2 4 Data → S • • • • •

Store STA Adr 13 2 5 A → M(Adr) • • • • •
STB Adr 14 2 5 B → M(Adr) • • • • •
STX Adr 15 2 5 X → M(Adr) • • • • •
STS Adr 16 2 5 S → M(Adr) • • • • •

2.4 Logic Operations

Operation type Name OP # ∼ RTN H N Z V C
AND ANDA Adr 17 2 7 A ∧M(Adr) → A – a a 0 0

ANDB Adr 18 2 7 B ∧M(Adr) → B – a a 0 0
ANDA #Data 19 2 6 A ∧Data → A – a a 0 0
ANDB #Data 1A 2 6 B ∧Data → B – a a 0 0

OR ORA Adr 1B 2 7 A ∨M(Adr) → A – a a 0 0
ORB Adr 1C 2 7 B ∨M(Adr) → B – a a 0 0
ORA #Data 1D 2 6 A ∨Data → A – a a 0 0
ORB #Data 1E 2 6 B ∨Data → B – a a 0 0

Exclusive-OR EORA Adr 1F 2 6 A⊕M(Adr) → A – a a 0 0
EORB Adr 20 2 6 B ⊕M(Adr) → B – a a 0 0
EORA #Data 21 2 6 A⊕Data → A – a a 0 0
EORB #Data 22 2 6 B ⊕Data → B – a a 0 0

Complement COMA 23 1 4 A′ → A – a a 0 –
COMB 24 1 4 B′ → B – a a 0 –
COM Adr 25 2 6 M ′(Adr) → M(Adr) – a a 0 –

Flag manipulation ANDCC #Data 26 2 6 CC ∧Data → CC a a a a a
ORCC #Data 27 2 6 CC ∨Data → CC a a a a a

2 INSTRUCTION SET 5

2.5 Arithmetic Operations

Operation type Name OP # ∼ RTN H N Z V C
Add ADDA Adr 28 2 7 A + M(Adr) → A a a a a a

ADDB Adr 29 2 7 B + M(Adr) → B a a a a a
ADDA #Data 2A 2 6 A + Data → A a a a a a
ADDB #Data 2B 2 6 B + Data → B a a a a a

Subtract SUBA Adr 2C 2 7 A−M(Adr) → A – a a a a
SUBB Adr 2D 2 7 B −M(Adr) → B – a a a a
SUBA #Data 2E 2 6 A−Data → A – a a a a
SUBB #Data 2F 2 6 B −Data → B – a a a a

Negate (2’s-compl) NEGA 30 1 5 A′ + 1 → A – a a a a
NEGB 31 1 5 B′ + 1 → B – a a a a
NEG Adr 32 2 7 M ′(Adr) + 1 → M(Adr) – a a a a

Arithmetic shift left ASLA 33 1 4 2 ·A → A – a a a a
ASLB 34 1 4 2 ·B → B – a a a a
ASL Adr 35 2 6 2 ·M(Adr) → M(Adr) – a a a a

Rotate left ROLA 36 1 4 2 ·A + C → A – a a a a
ROLB 37 1 4 2 ·B + C → B – a a a a
ROL Adr 38 2 6 2 ·M(Adr) + C → M(Adr) – a a a a

Increment INCA 39 1 4 A + 1 → A – a a a a
INCB 3A 1 4 B + 1 → B – a a a a
INC Adr 3B 2 6 M(Adr) + 1 → M(Adr) – a a a a

Decrement DECA 3C 1 4 A− 1 → A – a a a a
DECB 3D 1 4 B − 1 → B – a a a a
DEC Adr 3E 2 6 M(Adr)− 1 → M(Adr) – a a a a

Clear CLRA 3F 1 4 0 → A 0 0 1 – 0
CLRB 40 1 4 0 → B 0 0 1 – 0
CLR Adr 41 2 5 0 → M(Adr) 0 0 1 – 0

2.6 Test Operations

Operation type Name OP # ∼ RTN H N Z V C
Compare CMPA Adr 42 2 6 A−M(Adr) – a a a a

CMPB Adr 43 2 6 B −M(Adr) – a a a a
CMPX Adr 44 2 6 X −M(Adr) – a a a a
CMPS Adr 45 2 6 S −M(Adr) – a a a a
CMPA #Data 46 2 5 A−Data – a a a a
CMPB #Data 47 2 5 B −Data – a a a a
CMPX #Data 48 2 5 X −Data – a a a a
CMPS #Data 49 2 5 S −Data – a a a a

Zero or minus TSTA 4A 1 3 A− 0 – a a 0 0
TSTB 4B 1 3 B − 0 – a a 0 0
TST Adr 4C 2 5 M(Adr)− 0 – a a 0 0

Bit test BITA Adr 4D 2 6 A ∧M(Adr) – a a 0 0
BITB Adr 4E 2 6 B ∧M(Adr) – a a 0 0
BITA #Data 4F 2 5 A ∧Data – a a 0 0
BITB #Data 50 2 5 B ∧Data – a a 0 0

2 INSTRUCTION SET 6

2.7 Jump Operations

Operation type Name OP # ∼ RTN H N Z V C
Unconditional jump JMP Adr 51 2 4 Adr → PC • • • • •
Unconditional branch BRA Offs 52 2 6 PC + Offs → PC • • • • •
Conditional branch BMI Offs 53 2 6 If N = 1 : • • • • •

PC + Offs → PC
BPL Offs 54 2 6 If N = 0 : • • • • •

PC + Offs → PC
BEQ Offs 55 2 6 If Z = 1 : • • • • •

PC + Offs → PC
BNE Offs 56 2 6 If Z = 0 : • • • • •

PC + Offs → PC
BVS Offs 57 2 6 If V = 1 : • • • • •

PC + Offs → PC
BVC Offs 58 2 6 If V = 0 : • • • • •

PC + Offs → PC
BCS Offs 59 2 6 If C = 1 : • • • • •

PC + Offs → PC
BCC Offs 5A 2 6 If C = 0 : • • • • •

PC + Offs → PC
BHI Offs 5B 2 6 If C ′ · Z ′ = 1 : • • • • •

PC + Offs → PC
BLS Offs 5C 2 6 If C + Z = 1 : • • • • •

PC + Offs → PC
BGT Offs 5D 2 6 If (N ⊕ V)′ · Z ′ = 1 : • • • • •

PC + Offs → PC
BGE Offs 5E 2 6 If (N ⊕ V)′ = 1 : • • • • •

PC + Offs → PC
BLE Offs 5F 2 6 If (N ⊕ V) + Z = 1 : • • • • •

PC + Offs → PC
BLT Offs 60 2 6 If (N ⊕ V) = 1 : • • • • •

PC + Offs → PC
Jump to subroutine JSR Adr 61 2 7 S − 1 → S • • • • •

PC → M(S)
Adr → PC

Return from subroutine RTS 62 1 4 M(S) → PC • • • • •
S + 1 → S

Branch to subroutine BSR Offs 63 2 8 S − 1 → S • • • • •
PC → M(S)
PC + Offs → PC

Return from interrupt RTI 64 1 12 M(S) → A a a a a a
S + 1 → S
M(S) → B
S + 1 → S
M(S) → CC
S + 1 → S
M(S) → X
S + 1 → S
M(S) → PC
S + 1 → S

2 INSTRUCTION SET 7

2.8 Pushing Data to Stack and Pulling Data from Stack

Operation type Name OP # ∼ RTN H N Z V C
Push accumulator A PSHS A 65 1 5 S − 1 → S • • • • •

A → M(S)
Push accumulator B PSHS B 66 1 5 S − 1 → S • • • • •

B → M(S)
Push register CC PSHS CC 67 1 5 S − 1 → S • • • • •

CC → M(S)
Push register X PSHS X 68 1 5 S − 1 → S • • • • •

X → M(S)
Pull accumulator A PULS A 69 1 4 M(S) → A • • • • •

S + 1 → S
Pull accumulator B PULS B 6A 1 4 M(S) → B • • • • •

S + 1 → S
Pull register CC PULS CC 6B 1 4 M(S) → CC a a a a a

S + 1 → S
Pull register X PULS X 6C 1 4 M(S) → X • • • • •

S + 1 → S

2.9 Increasing/Decreasing the X-register

Operation type Name OP # ∼ RTN H N Z V C
Load effective address LEAX ,–X 6D 1 4 X − 1 → X • • • • •

LEAX ,X+ 6E 1 4 X + 1 → X • • • • •
LEAX n,X 6F 2 6 X + n → X • • • • •
LEAX A,X 70 1 5 X + A → X • • • • •
LEAX B,X 71 1 5 X + B → X • • • • •

2 INSTRUCTION SET 8

2.10 Data Transfer, Addressing via the X-register

Operation type Name OP # ∼ RTN H N Z V C
Load LDA ,X 72 1 4 M(X) → A • • • • •

LDB ,X 73 1 4 M(X) → B • • • • •
LDA ,X+ 74 1 5 M(X) → A • • • • •

X + 1 → X
LDB ,X+ 75 1 5 M(X) → B • • • • •

X + 1 → X
LDA ,–X 76 1 5 X − 1 → X • • • • •

M(X) → A
LDB ,–X 77 1 5 X − 1 → X • • • • •

M(X) → B
LDA n,X 78 2 7 M(n + X) → A • • • • •
LDB n,X 79 2 7 M(n + X) → B • • • • •
LDA A,X 7A 1 6 M(A + X) → A • • • • •
LDB A,X 7B 1 6 M(A + X) → B • • • • •
LDA B,X 7C 1 6 M(B + X) → A • • • • •
LDB B,X 7D 1 6 M(B + X) → B • • • • •

Store STA ,X 7E 1 4 A → M(X) • • • • •
STB ,X 7F 1 4 B → M(X) • • • • •
STA ,X+ 80 1 5 A → M(X) • • • • •

X + 1 → X
STB ,X+ 81 1 5 B → M(X) • • • • •

X + 1 → X
STA ,–X 82 1 5 X − 1 → X • • • • •

A → M(X)
STB ,–X 83 1 5 X − 1 → X • • • • •

B → M(X)
STA n,X 84 2 7 A → M(n + X) • • • • •
STB n,X 85 2 7 B → M(n + X) • • • • •
STA A,X 86 1 6 A → M(A + X) • • • • •
STB A,X 87 1 6 B → M(A + X) • • • • •
STA B,X 88 1 6 A → M(B + X) • • • • •
STB B,X 89 1 6 A → M(B + X) • • • • •

