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Encoding (mapping) the source symbols without considering the Entropy of the source.

• This is not exactly a compressing source coding, just a (for example binary) 
representation of the source symbols.

• No a-prior knowledge of statistical properties (first or higher order PDF) of the source 
are needed.

Encode fixed length source words to fixed length code words: 
n-ary source symbol set:
r-ary code symbol set:
Must be explicit:

Definition: Coding rate R

 

Shannon’s I. Theorem – Source Coding Theorem: If we apply a coding rate

Then the probability of decoding error can be made arbitrary small: 

Source coding, Type I:



Encode fixed length source words to fixed length code words: 
n=5 source symbol set:
Entropy of the source (no knowledge of the statistics): 

r=2 binary source code symbol set:
source word length code word length Coding rate R

(symbol by symbol):

(pair of symbols): 

(triple of symbols): 

However not convergent:

Source coding, Type I, Example:



ASCII (American Standard Code for Information Interchange)

Source symbol set size n=256, Code symbol set size r=2 (binary)
Encode source symbols by symbol (k=1) to code words of length l=8 binary digits.



Canopy of Perseverance Mars rover
ASCII encoded message: „DARE MIGHTY THINGS”

E.g.: 7 white, 1 red and 2 white slice =0000000100=4; 4+64=68=D 
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Encoding the source with considering the Entropy is also called Entropy Coding (Type II):

• Encode fixed length source words to variable length code words

• a-priori knowledge of statistical properties (first – or even higher – order PDF) of the 
source are needed.

Shannon’s method: Code word length should be reciprocally proportional to the 
corresponding source word probability.

By an r-ary code symbol set:
( ̅)

, where is the smallest integer greater 

than or equal to z. Notation:  length of the i-th code word.
Symbol by symbol ( ) encoding into binary code words (r=2)
n-ary source symbol set: with PDF: 

Shannon’s I. Theorem – Source Coding Theorem: 

Source coding, Entropy Coding



Definition: Code efficiency

Special case: 
Source Extension for improving efficiency: encoding a block of source symbols (k>1) into a 
code word:
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DMS:

k-th order stationary:

Strict stationary:

Shannon’s I. Theorem – Source Coding Theorem

Source coding, Entropy Coding



Shannon’s algorithm
Consider a discrete random variable X whit n possible values:

With a Probability Density Function (PDF) ordered the events by decreasing probability:

• Determine code word lengths first:  ,

• Determine code words in order, choosing the lexicographically first word of the correct 
length that maintains the prefix condition.

Or Alternatively
• Determine code words in order using the cumulative probability method
 Consider the partitioning of the zero to one interval according the event probabilities into 

subintervals. Each subinterval closed from the left side (lower limit) and open from the 
right side (upper limit) corresponds to an event. At the end we have the cumulated 
probabilities 1=

 Obtain the first r-ary digits of the lower limit value regarded as r-ary rational number 
(base-r numeral system) as corresponding code word.
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Shannon’s algorithm, example
= , , , , , = p(A)=0.385, p(B)=0.179, p(C)=0.154, p(D)=0.154, p(E)=0.128 , 

≅ ,

Determine binary (r=2) code word set.

Symbols A B C D E
Probabilities 0.385 0.179 0.154 0.154 0.128

Word lengths = 2 3 3 3 3

Code words (lexicographically) 00 010 011 100 101 

Cumulative probabilities 0.000 0.385 0.564 0.718 0.872
...in binary 0.00000 0.01100 0.10010 0.10110 0.11011
Code words (cumulative probability) 00 011 100 101 110

Prefix redundant: ∑ =0.75, Average length: ∑ ( ) · =2,615 , ℎ ≅ 83,57%

Reduce the longest Code words 00 011 100 101 110 

Prefix redundant: ∑ =0.875, Average length: ∑ ( ) · =2,436 , ℎ ≅ 89,71%

Reduce the longest Code words 00 01 100 101 110

Prefix complete: ∑ =1, Average length: ∑ ( ) · =2,308 , ℎ ≅ 94,69%



Build a binary tree starting from the root of the tree.
The Shannon–Fano binary tree construction algorithm:
 Divide the list into two parts, with the total frequency 

counts of the left part being as close to the total of the 
right as possible.

 The left part of the list is assigned a binary digit, and the 
right part is assigned the other binary digit.

Recursively apply the steps to each of the two halves, 
subdividing groups and adding bits to the codes until each 
symbol has become a corresponding code leaf on the tree.

Fano’s algorithm, Shannon-Fano code

Example (cont. of the previous):
Symbols A B C D E
Probabilities 0.385 0.179 0.154 0.154 0.128
b) First division 0 1
c) Second division 0 1 0 1
d) Third division 0 1
Code words 00 01 10 110 111 

Prefix complete: 1, Average length: , 



While Fano's Shannon–Fano tree is created by dividing from the 
root to the leaves, the Huffman algorithm works in the 
opposite direction, merging from the leaves to the root. 
Create a leaf node for each symbol and add it to a priority
queue, using its probability (or frequency of occurrence) as the 
priority.
While there is more than one node in the queue: 
 Remove the two nodes of lowest probability from the queue
 Prepend 0 and 1 respectively to any code already assigned to 

these nodes
 Create a new internal node with these two nodes as children 

and with probability equal to the sum of the two nodes' 
probabilities.

 Add the new node to the queue.
The remaining node is the root node and the tree is complete.

Example (cont. of the previous):
Symbols A B C D E
Count (total 39) 15 7 6 6 5
Probabilities 0.385 0.179 0.154 0.154 0.128
Codewords 0 100 101 110 111

Prefix complete: 1, Average length: , 

Huffman code



a-priori 
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Huffman code, another example



Continue previous example for DMS by encoding pair of symbols: , = ·

Codewords    ,
0,16
0,12
0,08
0,04
0,12
0,09
0,06
0,03
0,08
0,06
0,04
0,02
0,04
0,03
0,02
0,01

Huffman code, Source extension, DMS example
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= , · = 0,49 · 3 + 0,32 · 4 + 0,16 · 5 + 0,03 · 6 = ,
2 

≅ , ,  = = , ,    Efficiency = ≅ %, 



Kullback Leibler Distance, Kullback Leibler Divergence,
Information Divergence, Relative Entropy

Consider a discrete random variable 
With the true Probability Density Function (PDF):

= ,

And with our (not exact) assumed PDF:

Definition Kullback Leibler Distance:   

X     p(x) Code
½ 0
¼ 10
1/8 110
1/8 111

X     q(x) Code
½ 0
1/8 100
1/4 11
1/8 101

= , = ∑ ( ) · =1,875


