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Waveforms:
· 

could be any, here 

Gray mapping (coding)
Small Hamming distance
To Short Euclidean distance

 

 
 

Symbol error probability , , (or SER)
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Bit error probability (BER) at high SNR + Gray mapping (one symbol error one bit error)
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Quaternary (Quadrature) Phase Shift Keying – QPSK



M-ary Phase Modulation



M-ary Quadrature Amplitude Modulation – MQAM
Waveforms: e.g. 16QAM

 
 

 

Different probability of error for symbols

Distance to decision border
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MPSK versus MQAM
BPSK MPSK MQAM

Symbol energy: 

Euclidean Distance to decision border: 
   

 

  (   )

Same Euclidean Distance to decision border Approximately the same probability of error 
 

 

 

 

 

   

 

  

     

 

n=ld M bit        [dB] [dB] Comments
1 2 1 0 0
2 4 0,5 0 0 QPSK! B/2
3 8 0,33 3,57 x
4 16 0,25 8,17 6,53 QAM>PSK
5 32 0,2 13,2 x
6 64 0,17 18,4 12,1 6 dB for QAM



M-ary orthogonal Frequency Shift Keying – MFSK
Waveforms: e.g. 4FSK

· 

could be any

Signal set is orthogonal if 

Symbol error probability
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where (u) is cumulative distribution of
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M -ary biorthogonal signal constellation is obtained from a set of M/2 orthogonal signals 
(such as M/2-FSK)

Waveforms: e.g. biorthogonal 4FSK

Symbol error performance is similar as by QPSK

M-ary Biorthogonal Frequency Shift Keying
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Coded Modulation

Modulation 
Set 

partitioning

Increased 
Euclidean

Set 
partitioning

8PSK

Increased 
Euclidean

Encoder

( )

Goal: Increasing Euclidean distance using set partitioning. Redundant modulation symbols.
Advantage at Demodulation: Protection of subset selection by encoding, increased distance 
inside the subset. 

Example: 
Convolutional Encoder
8PSK Modulation
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Convolutional coding, trellis coding,
Viterbi (de)coding

Block coding versus convolutional coding: both linear, but convolutional coding have memory
Block diagram of code generation with shift registers:

Block coding (fixed window) Convolutional coding (moving window)

1 2 L

Parameters of convolutional codes: N, K, L, q, 
• N: Length of the code vector
• K: Length of the message vector
• L: Constrain length
• : Coding rate
• q: Size of GF(q), mostly binary, q=2



Convolutional coding
Some features: 
• Linear codes, because remains in the code space
• Generator polynomials are non-trivial, computer search for appropriate polynomials are 

necessary; there are no algorithms for defining the polynomials
• There are systematic, but usually non-systematic codes
• Possibility for „soft decoding”

Example: (N=2, K=1, q=2, L=3);  Realization with 
Registers Delayers

c



Convolutional coding
Generates the code vectors as discrete convolution of the message vector with the 
generator vectors:

, 

Unilateral Z-transform: converts a discrete-time signal x(n), which is a sequence of real or 
complex numbers, into a complex frequency-domain representation X(z). 

In our case discrete –time sequence (i.e. u(n), c(n), etc.) of symbols (i.e. GF(q) elements) 
into frequency domain. Let use the notation: 

Transformation of message sequence u(n) into message polynomial 

Transformation of generator sequence (n) into generator polynomial 



Convolutional coding
A code polynomial

The code vector polynomial is then the vector of code polynomials

Where is the transpose of the vector of generator polynomials

Example: (N=2, K=1, q=2, L=3);

Let the message: u(n)= 1 0 0 1 1 …….
Z-transform:
Code polynomials:

The code sequence: c(n)=



Systematic versus non-systematic codes
• NSC: Non-recursive, non-Systematic, Convolutional codes

The current state of the coder is independent from the structure
Usual case except turbo coding, where RSC is applied

• RSC: Recursive, Systematic Convolutional codes
The current state of the coder depends from the structure

NSC structure Derive an RSC from an NSC RSC structure 

Systematic



Graphical representation
Describing the time behavior of the encoding process: State diagram versus trellis diagram

U
0 0 0 0 0

0 0

1 0 0 1 1

1 0

0 0 1 1 1

0 0

1 0 1 0 0

1 0

0 1 0 1 0

0 1

1 1 0 0 1

1 1

0 1 1 0 1

0 1

1 1 1 1 0

1 1

0  0

1  0 0  1

1  1

00/0

11/1 11/0

00/1

10/0

10/1

01/001/1



Graphical representation
Describing the time behavior of the encoding process: State diagram versus trellis diagram
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• Each path corresponds to a code symbol 
sequence

• Hamming distance separate paths

Minimum Hamming distance (=5 in this case)
00  00  00
11  10  11 d=5

Decoding: Estimate the most probable path



Decoding criterions
• MAP – Maximum A-posteriori Probability criteria

Multiplying with 

According to Bayes criteria

Therefore:

( )

• ML – Maximum Likelihood criteria

( )

If uniform, then MAP ML



Decoding criterions
• Maximum Likelihood estimation over BSC with error probability p

( )

( , )̅ , ̅
, ̅

̅ ̅

(p)

0

[bit/channel use]



Decoding criterions
• Maximum Likelihood (ML) decision 
In favor of the vector from all the possible vectors (sequence) of length N 
according to   

̅ ̅
Number of required distance calculations: (exponentially increasing).

• Viterbi algorithm, Maximum Likelihood Sequence Estimation (MLSE)

Number of required distance calculations: (Linear increasing).

Example: (N=2, K=1, L=3, q=2), , 

0 0 0 0    0 0 Suppose 00 00 00, decision will be wrong, if we receive 3, 4, or 5
1 1    1 0    1 1 d=5 errors, e.g. 10 10 10 -> 11 10 11 

1 1    1 1    0 1 Probability of wrong decision at d=5 over BSC(p)

0 0    0 1    1 0   d=5



Resulting error probability
• Convolutional coding, Viterbi decoding, BSC(p) 

Upper bound of wrong decision probability at d

Upper bound of resulting error probability at (at the end of transmission)

,

Where is the number of (loops) with Hamming d of 
constructing paths.

For BPSK over AWGN with  



Example: Trellis diagram
• Example parameter of convolutional coding (N=2, K=1, L=3, q=2)
• Encoding the Message sequence into Code vector sequence 
• Cumulate the Hamming distance from the Received vector sequence along all 

possible path
• Estimate the most probable path 
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Puncturing
• Indifferent code symbols could be avoided by transmission
• Even other code symbols could be avoided adapting the coding rate to the channel 

quality  

Viterbi algorithm
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Hamming (N=7, K=4, q=2) versus Punctured convolutional coding (N=2, K=1, L=3, q=2) 
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Coded Modulation

Modulation 
Set 

partitioning

Increased 
Euclidean

Set 
partitioning

8PSK

Increased 
Euclidean

Encoder

( )

Goal: Increasing Euclidean distance using set partitioning. Redundant modulation symbols.
Advantage at Demodulation: Protection of subset selection by encoding, increased distance 
inside the subset. 

Example: 
Convolutional Encoder
8PSK Modulation
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