Úrkommunikáció

Space Communication 2023/12.

Quaternary (Quadrature) Phase Shift Keying - QPSK

Waveforms:

$$
\begin{aligned}
& s_{i}(t)=\sqrt{\frac{2 \cdot E_{s}}{T_{s}}} \cos \left(\omega_{c} \cdot t+i \cdot \frac{\pi}{2}+\varphi\right) \\
& E_{s}=2 \cdot E_{b} \text { and } T_{s}=2 \cdot T_{b}
\end{aligned}
$$

$$
\varphi \text { could be any, here } \frac{\pi}{4}
$$

$$
\varphi_{4 P}=\frac{\pi}{2} \quad d_{4 P}=\sqrt{E_{s}} \sin \frac{\pi}{4}=\sqrt{\frac{E_{s}}{2}} .
$$

Gray mapping (coding)

Small Hamming distance
To Short Euclidean distance
Symbol error probability $P_{e, S, Q P S K}$ (or SER)

$$
P_{e, S, Q P S K}=1-P_{c, I} \cdot P_{c, Q}=1-\left(1-\frac{1}{2} \operatorname{erfc} \sqrt{\frac{E_{S}}{2 \cdot N_{0}}}\right)^{2}=\operatorname{erfc} \sqrt{\frac{E_{S}}{2 \cdot N_{0}}}-\frac{1}{4}\left(\operatorname{erfc} \sqrt{\frac{E_{S}}{2 \cdot N_{0}}}\right)^{2}
$$

Bit error probability (BER) at high SNR + Gray mapping (one symbol error \Rightarrow one bit error)

$$
P_{e, b, Q P S K} \cong \frac{1}{2} \operatorname{erfc} \sqrt{\frac{2 \cdot E_{b}}{2 \cdot N_{0}}}-\underbrace{\frac{1}{4}\left(\operatorname{erfc} \sqrt{\frac{E_{S}}{2 \cdot N_{0}}}\right)^{2}}_{\approx 0}=\frac{1}{2} \operatorname{erfc} \sqrt{\frac{E_{b}}{N_{0}}}=P_{e, B P S K}
$$

M-ary Phase Modulation

M-ary Quadrature Amplitude Modulation - MQAM

Waveforms:
$s_{i}(t)=a_{k} \cdot \varphi_{1}(t)+q_{l} \cdot \varphi_{2}(t)$

$$
a_{i}, q_{i}=\sqrt{\frac{E_{\max }}{2}} \cdot \frac{2 i-1}{\sqrt{M}-1} \quad i= \pm 1, \pm 2, \ldots, \pm \frac{\sqrt{M}}{2}
$$

Different probability of error for symbols $E_{i} \leq E_{\text {max }}$
Distance to decision border $d_{M Q}=\frac{\sqrt{E_{\max }}}{\sqrt{2}(\sqrt{M}-1)}$

$$
P_{E_{Q A M}}=2\left(1-\frac{1}{\sqrt{M}}\right) \frac{1}{2} \operatorname{erfc}\left(\frac{d}{\sqrt{N_{0}}}\right)-\left(1-\frac{1}{\sqrt{M}}\right)^{2} \operatorname{erfc}^{2}\left(\frac{d}{\sqrt{N_{0}}}\right)
$$

MPSK versus MQAM

$$
\begin{array}{ccc}
\text { BPSK } & \text { MPSK } & \text { MQAM } \\
E_{b}=P_{B P} \cdot T_{b} & \text { Symbol energy: } & \\
E_{S}=P_{M P} \cdot T_{b} \cdot l d M & E_{\max }=P_{M Q} \cdot T_{b} \cdot l d M
\end{array}
$$

Euclidean Distance to decision border:

$$
d_{B P}=\sqrt{E_{b}}
$$

$d_{M P}=\sqrt{E_{S}} \sin \frac{\pi}{M}$
$d_{M Q}=\frac{\sqrt{E_{\max }}}{\sqrt{2}(\sqrt{M}-1)}$
Same Euclidean Distance to decision border \leftrightarrow Approximately the same probability of error

$$
\begin{gathered}
\frac{d_{M P}}{d_{B P}}=1=\frac{\sqrt{E_{S}} \sin \frac{\pi}{M}}{\sqrt{E_{b}}}=\frac{\sqrt{P_{M P} \cdot T_{b} \cdot l d M} \sin \frac{\pi}{M}}{\sqrt{P_{B P} \cdot T_{b}}} \leftrightarrow \frac{P_{M P}}{P_{B P}}=\frac{1}{\left(\sin \frac{\pi}{M}\right)^{2} \cdot l d M} \\
\frac{d_{M Q}}{d_{B P}}=1=\frac{\frac{\sqrt{E_{m a x}}}{\sqrt{2}(\sqrt{M}-1)}}{\sqrt{E_{b}}}=\frac{\sqrt{P_{M Q} \cdot T_{b} \cdot l d M}}{\sqrt{2}(\sqrt{M}-1) \sqrt{P_{B P} \cdot T_{b}}} \leftrightarrow \frac{P_{M Q}}{P_{B P}}=\frac{2 \cdot(\sqrt{M}-1)^{2}}{l d M}
\end{gathered}
$$

$\mathrm{n}=\mathrm{ld} \mathrm{M}$ bit	$M=2^{n}$
1	2
2	4
3	8
4	16
5	32
6	64

$$
\begin{gathered}
B_{n} \cdot T_{b} \\
1 \\
0,5 \\
0,33 \\
0,25 \\
0,2 \\
0,17
\end{gathered}
$$

$P_{M P} / P_{B P}[\mathrm{~dB}]$
0
$P_{M Q} / P_{B P}[\mathrm{~dB}]$ Comments0

$$
0
$$

$$
0,33
$$

QPSK! B/2

$$
3,57
$$

x

$$
16
$$

$$
8,17
$$

$$
6,53 \quad \text { QAM>PSK }
$$

$$
32
$$

$$
13,2
$$

$$
64
$$

$$
18,4
$$

$$
12,1
$$

M-ary orthogonal Frequency Shift Keying - MFSK

Waveforms:
$s_{i}(t)=\sqrt{\frac{2 \cdot E_{s}}{T_{s}}} \cos \left[\left(\omega_{c}+i \cdot \delta \omega\right) \cdot t+\varphi_{i}\right] \quad i=0, \ldots, M-1$
Frequency deviation: $\delta \omega$
φ_{i} could be any
Signal set is orthogonal if $\delta \omega=2 \pi / T_{S}$

Symbol error probability

$P_{E}=\frac{M-1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \Phi\left(u-\sqrt{\frac{2 E}{N_{0}}}\right) \Phi^{M-2}(u) e^{-u^{2} / 2} d u$
where $\Phi(u)$ is cumulative distribution of
$\mathrm{G}(\mu=0, \sigma=1)$ standard Gaussian function $\Phi(u)=\frac{1}{2 \pi} \int_{-\infty}^{u} e^{-x^{2} / 2} d x$

Upper bound at high SNR

$$
P_{E} \leq\left\{\begin{array}{cc}
1, & E / N_{0} \leq \ln M \\
\exp \left\{-\left(\sqrt{E / N_{0}}-\sqrt{\ln M}\right)^{2}\right\}, & \ln M<E / N_{0} \leq 4 \cdot \ln M \\
\exp \left\{-\left(E / 2 N_{0}-\ln M\right)\right\}, & E / N_{0}>4 \cdot \ln
\end{array}\right.
$$

M-ary Biorthogonal Frequency Shift Keying

M-ary biorthogonal signal constellation is obtained from a set of $M / 2$ orthogonal signals (such as M/2-FSK)

Waveforms:
e.g. biorthogonal 4FSK
$\pm s_{i}(t) i=0, \ldots, M / 2$
Symbol error performance is similar as by QPSK

Coded Modulation

Goal: Increasing Euclidean distance using set partitioning. Redundant modulation symbols. Advantage at Demodulation: Protection of subset selection by encoding, increased distance inside the subset.

Example: $K=2, K_{1}=1, N_{1}=2, R_{c}=\frac{1}{2}$
Convolutional Encoder 8PSK Modulation

Convolutional coding, trellis coding, Viterbi (de)coding

Block coding versus convolutional coding: both linear, but convolutional coding have memory Block diagram of code generation with shift registers:

Block coding (fixed window)
Convolutional coding (moving window)

Parameters of convolutional codes: $\mathrm{N}, \mathrm{K}, \mathrm{L}, \mathrm{q}, R_{c}=K / N$

- N : Length of the code vector
- K: Length of the message vector
- L: Constrain length
- R_{c} : Coding rate
- q : Size of GF(q), mostly binary, $q=2$

Convolutional coding

Some features:

- Linear codes, because remains in the code space
- Generator polynomials are non-trivial, computer search for appropriate polynomials are necessary; there are no algorithms for defining the polynomials
- There are systematic, but usually non-systematic codes
- Possibility for „soft decoding"

Example: ($\mathrm{N}=2, \mathrm{~K}=1, \mathrm{q}=2, \mathrm{~L}=3$); Realization with

Convolutional coding

Generates the code vectors as discrete convolution of the message vector with the generator vectors:

$$
\begin{aligned}
\bar{c}(n) & =\left[c_{1}(n), c_{2}(n), \cdots, c_{N}(n)\right] \\
c_{i}(n) & =\left(\sum_{j=0}^{L-1} u(n-j) \cdot g_{i j}\right) \bmod q
\end{aligned}
$$

Unilateral Z-transform: converts a discrete-time signal $x(n)$, which is a sequence of real or complex numbers, into a complex frequency-domain representation $X(z)$.

$$
X(z)=Z\{x(n)\}=\sum_{n=0}^{\infty} x_{n} \cdot z^{-n}
$$

In our case discrete -time sequence (i.e. $u(n), c(n)$, etc.) of symbols (i.e. GF(q) elements) into frequency domain. Let use the notation: $D=z^{-1}$

Transformation of message sequence $\mathrm{u}(\mathrm{n})$ into message polynomial $U(D)$

$$
U(D)=Z\{u(n)\}=\sum_{j=0}^{\infty} u_{j} \cdot D^{j}
$$

Transformation of generator sequence $g_{i}(\mathrm{n})$ into generator polynomial $G_{i}(D)$

$$
G_{i}(D)=\sum_{j=0}^{L-1} g_{i j} \cdot D^{j}
$$

Convolutional coding

A code polynomial

$$
C_{i}(D)=U(D) \cdot G_{i}(D)
$$

The code vector polynomial is then the vector of code polynomials

$$
\bar{C}(D)=\left[C_{1}(D), C_{2}(D), \cdots, C_{N}(D)\right]=U(D) \cdot \bar{G}^{T}(D)
$$

Where $\bar{G}^{T}(D)$ is the transpose of the vector of generator polynomials

$$
\bar{G}(D)=\left[G_{1}(D), G_{2}(D), \cdots, G_{N}(D)\right]
$$

Example: ($\mathrm{N}=2, \mathrm{~K}=1, \mathrm{q}=2, \mathrm{~L}=3$);
$G_{1}(D)=g_{10}+g_{11} \cdot D^{1}+g_{12} \cdot D^{2}=1+D^{1}+D^{2}$
$G_{2}(D)=g_{20}+g_{21} \cdot D^{1}+g_{22} \cdot D^{2}=1+D^{2}$
Let the message: $u(n)=10011 \ldots \ldots$.
Z-transform: $\quad \mathrm{U}(\mathrm{D})=1+D^{3}+D^{4}+\cdots$
Code polynomials:

$$
\begin{aligned}
& C_{1}(D)=U(D) \cdot G_{1}(D)=1+D^{3}+D^{4}+D+D^{4}+D^{5}+D^{2}+D^{5}+D^{6}+\cdots \\
&=1+D+D^{2}+D^{3}+D^{6}+\cdots \\
& C_{2}(D)=U(D) \cdot G_{2}(D)=1+D^{3}+D^{4}+D^{2}+D^{5}+D^{6}+\cdots \\
&=1+D^{2}+D^{3}+D^{4}+D^{5}+D^{6}+\cdots \\
& \bar{C}(D)=\left[C_{1}(D), C_{2}(D)\right]
\end{aligned}
$$

Systematic versus non-systematic codes

- NSC: Non-recursive, non-Systematic, Convolutional codes

The current state of the coder is independent from the structure
Usual case except turbo coding, where RSC is applied

- RSC: Recursive, Systematic Convolutional codes

The current state of the coder depends from the structure
NSC structure
Derive an RSC from an NSC RSC structure

$G_{1}(D) \Rightarrow \tilde{G}_{1}(D)=1$ Systematic
$G_{2}(D) \Rightarrow \tilde{G}_{2}(D)=\frac{G_{2}(D)}{G_{1}(D)}=\frac{1+D^{2}}{1+D^{1}+D^{2}} \quad A(D)=\frac{U(D)}{1+D^{1}+D^{2}} \Rightarrow U(D)=A(D) \cdot\left(1+D^{1}+D^{2}\right)$
$\tilde{C}_{1}(D)=U(D) \cdot \tilde{G}_{1}(D)=U(D)$
$\Rightarrow u(n)=a(n)+a(n-1)+a(n-2)$
$\tilde{C}_{2}(D)=U(D) \cdot \tilde{G}_{2}(D)=\underbrace{\frac{U(D)}{G_{1}(D)}}_{A(D)} G_{2}(D)$
$\Rightarrow a(n)=u(n)+a(n-1)+a(n-2)$

Graphical representation

Describing the time behavior of the encoding process: State diagram versus trellis diagram

U	A_{1}	A_{2}	C_{1}	C_{2}
0	0	0	0	0
	0	0		
1	0	0	1	1
	1	0		
0	0	1	1	1
	0	0		
1	0	1	0	0
	1	0		
0	1	0	1	0
	0	1		
1	1	0	0	1
	1	1		
0	1	1	0	1
	0	1		
1	1	1	1	0
	1	1		

Graphical representation

Describing the time behavior of the encoding process: State diagram versus trellis diagram

- Each path corresponds to a code symbol sequence
- Hamming distance separate paths

Minimum Hamming distance $d_{\text {free }}$ ($=5$ in this case)
000000
$111011 \mathrm{~d}=5$
Decoding: Estimate the most probable path

Decoding criterions

- MAP - Maximum A-posteriori Probability criteria

$$
\hat{c}(n)=\arg \max _{c(n)}\{p(c(n) \mid v(n))\} ; \text { with } a-\text { posteriori } p(c(n) \mid v(n))
$$

Or equivalently

$$
p(\hat{c}(n) \mid v(n)) \geq p(c(n) \mid v(n)) \quad \forall c(n)
$$

Multiplying with $p(v(n))$

$$
p(\hat{c}(n) \mid v(n)) \cdot p(v(n)) \geq p(c(n) \mid v(n)) \cdot p(v(n)) \quad \forall c(n)
$$

According to Bayes criteria

$$
p(\hat{c}(n), v(n)) \geq p(c(n), v(n)) \quad \forall c(n)
$$

$$
p(v(n) \mid \hat{c}(n)) \cdot p(\hat{c}(n)) \geq p(v(n) \mid c(n)) \cdot p(c(n)) \quad \forall c(n)
$$

Therefore:

$$
\hat{c}(n)=\arg \max _{c(n)}\{p(v(n) \mid c(n)) \cdot p(c(n))\} ; \text { with } a-\operatorname{priori} p(c(n))
$$

- ML - Maximum Likelihood criteria

$$
\hat{c}(n)=\arg \max _{c(n)}\{p(v(n) \mid c(n))\} ; \text { without } a-\operatorname{priori} p(c(n))
$$

$$
\text { If } p(c(n)) \text { uniform, then } \mathrm{MAP} \equiv \mathrm{ML}
$$

Decoding criterions

- Maximum Likelihood estimation over BSC with error probability p

$$
\hat{c}(n)=\arg \max _{c(n)}\{p(v(n) \mid c(n))\}
$$

For vectors of length N

$$
\begin{gathered}
p(\bar{v} \mid \bar{c})=(1-p)^{N-d(\bar{v}, \bar{c})} \cdot p^{d(\bar{v}, \bar{c})}=(1-p)^{N} \cdot\left(\frac{p}{1-p}\right)^{d(\bar{v}, \bar{c})} \\
\hat{c}=\arg \max _{\bar{c}}\{p(\bar{v} \mid \bar{c})\}=\arg \min _{\bar{c}}\{d(\bar{v}, \bar{c})\}
\end{gathered}
$$

Decoding criterions

- Maximum Likelihood (ML) decision

In favor of the vector \bar{c} from all the possible 2^{N} vectors (sequence) of length N according to

$$
\hat{\bar{c}}=\arg \max _{\bar{c}}\{p(\bar{v} \mid \bar{c})\}=\arg \min _{\bar{c}}\{d(\bar{v}, \bar{c})\}
$$

Number of required distance calculations: 2^{N} (exponentially increasing).

- Viterbi algorithm, Maximum Likelihood Sequence Estimation (MLSE)

At closing of alternative routes (starting from the same state and ending at the same state of the trellis) discarding path with higher Hamming distance to the received sequence of length N .
Number of required distance calculations: $\sim N$ (Linear increasing).
Example: $(\mathrm{N}=2, \mathrm{~K}=1, \mathrm{~L}=3, \mathrm{q}=2), G_{1}(D)=1+D^{1}+D^{2}, G_{2}(D)=1+D^{2}$

0	0	0	0	0	Suppose 000000, decision will be wrong, if we receive 3,4, or 5 1 1

indifferent

Resulting error probability

- Convolutional coding, Viterbi decoding, BSC(p)

Upper bound of wrong decision probability at d

$$
P_{d}=\left\{\begin{array}{c}
\sum_{i=\frac{d+1}{2}}^{d}\binom{d}{i} \cdot p^{i} \cdot(1-p)^{d-i} \quad \text { for } d \text { odd } \\
\frac{1}{2} \cdot\binom{d}{d / 2} \cdot p^{d / 2} \cdot(1-p)^{d / 2}+\sum_{i=\frac{d}{2}+1}^{d}\binom{d}{i} \cdot p^{i} \cdot(1-p)^{d-i} \quad \text { for } d \text { even }
\end{array}\right.
$$

Upper bound of resulting error probability at $N \rightarrow \infty$ (at the end of transmission)

$$
P_{e, B S C}<\sum_{d=\frac{d_{\text {free }}}{2}}^{\infty} a_{d} \cdot P_{d}
$$

Where a_{d} is the number of closing of alternative routes (loops) with Hamming d of constructing paths.

For BPSK over AWGN with $S N R P_{e}<\sum_{d=d_{f r e e}}^{\infty} \operatorname{erfc} \sqrt{S N R \cdot R_{c} \cdot d}$

Example: Trellis diagram

- Example parameter of convolutional coding ($\mathrm{N}=2, \mathrm{~K}=1, \mathrm{~L}=3, \mathrm{q}=2$)
- Encoding the Message sequence $u(n)$ into Code vector sequence $\bar{c}(n)$
- Cumulate the Hamming distance from the Received vector sequence $\bar{v}(n)$ along all possible path
- Estimate the most probable path

Puncturing

- Indifferent code symbols could be avoided by transmission
- Even other code symbols could be avoided adapting the coding rate R_{C} to the channel quality

Viterbi algorithm

Hamming ($\mathrm{N}=7, \mathrm{~K}=4, \mathrm{q}=2$) versus Punctured convolutional coding ($\mathrm{N}=2, \mathrm{~K}=1, \mathrm{~L}=3, \mathrm{q}=2$) $R_{c}=4 / 7 \cong 0,6$

$$
R_{c}=3 / 5=0,6
$$

Coded Modulation

Goal: Increasing Euclidean distance using set partitioning. Redundant modulation symbols. Advantage at Demodulation: Protection of subset selection by encoding, increased distance inside the subset.

Example: $K=2, K_{1}=1, N_{1}=2, R_{c}=\frac{1}{2}$
Convolutional Encoder 8PSK Modulation

