Űrkommunikáció Space Communication 2023/3.

Ergodicity of stochastic processes

A **stochastic process** is said to be **ergodic** if its statistical properties can be deduced from a single realization (sufficiently long, random sample) of the process.

Ergodicity: If **ensemble average always equals time average**, then the system is ergodic Example for WWS i.e. $m_{\xi}(t) = m_{\xi}(t_0) = m_{\xi}$ and $K_{\xi}(t_0, t_0 + \tau) = K_{\xi}(\tau)$ processes

• Mean-ergodic process:

$$m_{\xi} = \lim_{T \to \infty} \frac{1}{T} \int_{t_0}^{t_0 + T} \xi_t dt$$

• Auto-covariance-ergodic process:

$$K_{\xi}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{t_0}^{t_0 + T} (\xi_t - m_{\xi}) \cdot (\xi_{t+\tau} - m_{\xi}) dt$$

• Autocorrelation-ergodic process:

$$R_{\xi}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{t_0}^{t_0 + T} \xi_t \cdot \xi_{t+\tau} dt$$

A process which is ergodic in the mean and auto-covariance is sometimes called **ergodic in the wide sense**.

Ergodicity of stochastic processes

Example for Ergodic process

Each resistor has an associated **thermal noise** that depends on the temperature.

Experiment: Take N resistors (N should be very large) and plot the voltage across those resistors for a long period. For each resistor you will have a waveform, which is a **realization of the thermal noise process.**

Time average: Calculate the average value of that waveform;

Ensemble average: There are N waveforms as there are N resistors. Take a particular instant of time t_i in all those plots and find the average value;

Mean-ergodic: Time average = Ensemble average

• Example for Non-ergodic process

Suppose that we have two coins: one coin is fair and the other has two heads.

Fair coin 0 2 1

We choose (at random) one of the coins first, and then perform a sequence of independent tosses of our selected coin.

Ensemble average is 1/2 (1/2 + 1) = 3/4

Time average: the long-term average is 1/2 for the fair coin and 1 for the two-headed coin.

So the long term time-average is either 1/2 or 1.

The process is **not ergodic in mean**.

Goal of communication: Transmit or store not just one random variable but a series of random variables.

Let us diel with **discrete stochastic processes** which are the series (ordered in space or time) of random variables. Most of our findings will be also valid for continuous processes.

Recap probability theory: Joint and conditional probability (Bayes's theorem)

• Two discrete random variables X and Y

$$p_{X,Y}(x, y) = Prob(X = x \text{ and } Y = y) =$$

= $Prob(Y = y | X = x) \cdot Prob(X = x) = Prob(X = x | Y = y) \cdot Prob(Y = y)$

Short notations:

$$p(x,y) = p(y|x) \cdot p(x) = p(x|y) \cdot p(y)$$
$$p(y|x) = \frac{p(x,y)}{p(x)} \text{ and } p(x|y) = \frac{p(x,y)}{p(y)}$$

• *n* discrete random variables $X_1, X_2, ..., X_n$ (or short \overline{X} and $\overline{x} = [x_1, x_2, ..., x_n]$)

 $p(\bar{x}) = p(x_1, x_2, \dots, x_n) = p(x_1) \cdot p(x_2|x_1) \cdot p(x_3|x_1, x_2) \cdots p(x_n|x_1, x_2, \dots, x_{n-1})$ This identity is known as the **chain rule** of probability.

$$p(\bar{x}) = p(x_1, x_2, \dots, x_n) = \prod_{i=1}^n p(x_i | x_1, x_2, \dots, x_{i-1})$$

Let us start with some definitions:

Vector of n discrete random variables $\overline{X} = [X_1, X_2, ..., X_n]$ and outcome $\overline{x} = [x_1, x_2, ..., x_n]$ Def.: **Conditional Information**: The self-information of an event with the knowledge of the previous events:

$$I(x_n | x_1, x_2, \dots, x_{n-1}) = ld \frac{1}{p(x_n | x_1, x_2, \dots, x_{n-1})} [bit, Shannon]$$

Def.: Conditional Entropy: The average of the conditional information:

$$H(X_n | X_1, X_2, \dots, X_{n-1}) = E\{I(x_n | x_1, x_2, \dots, x_{n-1})\} =$$
$$= \sum_{\bar{x}} p(\bar{x}) \cdot ld \frac{1}{p(x_n | x_1, x_2, \dots, x_{n-1})} \left[\frac{bit}{symbol}\right]$$

Def.: Joint Information: Amount of Information conveyed by a block of random variables:

$$I(x_1, x_2, \dots, x_n) = ld \frac{1}{p(x_1, x_2, \dots, x_n)} [bit, Shannon]$$

Def.: Joint Entropy or Block Entropy: The average of the joint information:

$$H(X_{1}, X_{2}, ..., X_{n}) = H(\bar{X}) = E\{I(x_{1}, x_{2}, ..., x_{n})\} =$$
$$= \sum_{\bar{x}} p(\bar{x}) \cdot ld \frac{1}{p(x_{1}, x_{2}, ..., x_{n})} \left[\frac{bit}{symbol}\right] =$$

Cont. Joint Entropy or Block Entropy:

$$H(\bar{X}) = \sum_{\bar{x}} p(\bar{x}) \cdot ld \frac{1}{p(\bar{x})} = -\sum_{\bar{x}} p(\bar{x}) \cdot ld p(\bar{x}) \stackrel{\text{chain rule}}{\Longrightarrow}$$
$$= -\sum_{\bar{x}} p(\bar{x}) ld \prod_{i=1}^{n} p(x_i | x_1, x_2, \dots, x_{i-1}) \stackrel{\text{Log of product}}{\Longrightarrow}$$

$$= -\sum_{\bar{x}} p(\bar{x}) \cdot \left[ld \ p(x_1) + ld \ p(x_2|x_1) + ld \ p(x_3|x_1, x_2) + \dots + ld \ p(x_n|x_1, x_2, \dots, x_{n-1}) \right] =$$

$$= \sum_{\bar{x}} p(\bar{x}) \cdot \left[ld \frac{1}{p(x_1)} + ld \frac{1}{p(x_2|x_1)} + ld \frac{1}{p(x_3|x_1, x_2)} + \dots + ld \frac{1}{p(x_n|x_1, x_2, \dots, x_{n-1})} \right] = \\ = \sum_{\bar{x}} p(\bar{x}) \cdot ld \frac{1}{p(x_1)} + \sum_{\bar{x}} p(\bar{x}) \cdot ld \frac{1}{p(x_2|x_1)} + \dots + \sum_{\bar{x}} p(\bar{x}) \cdot ld \frac{1}{p(x_n|x_1, x_2, \dots, x_{n-1})} = \\ = \sum_{\bar{x}} \frac{1}{p(x_1|x_1, x_2, \dots, x_{n-1})}{H(x_1|x_1, x_2, \dots, x_{n-1})} = \\ = \sum_{i=1}^n H(x_i|x_1, x_2, \dots, x_{i-1})$$

Cont. Joint Entropy or Block Entropy:

$$H(\bar{X}) = \sum_{i=1}^{n} H(x_i | x_1, x_2, \dots, x_{i-1})$$

Let us consider a *source without memory*, i.e. the outcomes in the series (time or space) are independent from each other and stationary at least in first order.

$$H(X_1) = H(X_i) = H(X)$$

Def.: Discrete Memoryless Source (DMS)

$$H_{DMS}(\bar{X}) = \sum_{i=1}^{n} H(X_i) \overleftrightarrow{\text{Stationarity}} n \cdot H(X)$$

Def.: Entropy per symbol from Block Entropy of n symbols

$$H_n(X) = \frac{1}{n} H(\overline{X}) = \frac{1}{n} H(X_1, X_2, \dots, X_n) \underset{DM}{\longleftrightarrow} H(X)$$

Now let us consider the case $n \to \infty$ i.e. Entropy per symbol of stochastic processes $H_{\infty}(X)$.

But how to define and by what conditions exists?

How to define the Entropy per symbol of stochastic processes $H_{\infty}(X)$

We can observe $H_{\infty}(X)$ in two ways:

• As the limit of Entropy per symbol from Block Entropy if the block size increasing:

$$H_{\infty}(X) \stackrel{?}{\Leftrightarrow} \lim_{n \to \infty} H_n(X) = \lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \dots, X_n)$$

• OR as **the limit of conditional Entropy** of a symbol if the set size of condition symbols increasing.

$$H_{\infty}(X) \stackrel{?}{\Leftrightarrow} \lim_{n \to \infty} H(x_n | x_1, x_2, \dots, x_{n-1})$$

Proof of Gallager (1968) with 3 lemmas:

- *Lemma A:* The conditional Entropy monotone decreasing if the set size of condition symbols increasing: $H(x_n|x_1, x_2, ..., x_{n-1}) \le H(x_{n-1}|x_1, x_2, ..., x_{n-2})$
- less condition -> higher uncertainty: $H(x_n|x_1, x_2, ..., x_{n-1}) \le H(x_n|x_2, ..., x_{n-1})$
- n-th order stationarity: $H(x_n | x_2, ..., x_{n-1}) = H(x_{n-1} | x_1, x_2, ..., x_{n-2}).$

Lemma B: The Entropy per symbol is higher or equal to the conditional Entropy:

$$H_n(X) \ge H(x_n | x_1, x_2, \dots, x_{n-1})$$

$$H_n(X) = \frac{1}{n} H(X_1, X_2, \dots, X_n) = \frac{1}{n} \sum_{i=1}^n H(x_i | x_1, x_2, \dots, x_{i-1}) \ge 0$$

• Because A: The last term in the sum is a lower bound on each of the other term.

$$\geq \frac{1}{n} \sum_{i=1}^{n} H(x_n | x_1, x_2, \dots, x_{n-1}) = \frac{1}{n} \cdot n \cdot H(x_n | x_1, x_2, \dots, x_{n-1}) = H(x_n | x_1, x_2, \dots, x_{n-1})$$

Lemma C: The Entropy per symbol monotone decreasing: $H_n(X) \leq H_{n-1}(X)$

$$H_n(X) = \frac{1}{n} H(\bar{X}) = \frac{1}{n} H(X_1, X_2, \dots, X_n) = \frac{1}{n} [H(X_1, X_2, \dots, X_{n-1}) + H(x_n | x_1, \dots, x_{n-1})]$$

• Because B: the entropy per symbol is higher as the last term:

$$\begin{aligned} H_n(X) &\leq \frac{1}{n} [(n-1) \cdot H_{n-1}(X) + H_n(X)] \\ n \cdot H_n(X) &\leq (n-1) \cdot H_{n-1}(X) + H_n(X) \\ (n-1) \cdot H_n(X) &\leq (n-1) \cdot H_{n-1}(X) \end{aligned}$$

Since the **Entropy per symbol** $H_n(X)$ and the **conditional Entropy** $H(x_n|x_1, x_2, ..., x_{n-1})$ are both nonnegative and nonincreasing with *n* (Lemmas A and C), **both limits must exist**.

• The limit of Entropy per symbol: $\lim_{n\to\infty} H_n(X) = \lim_{j\to\infty} H_{n+j}(X)$ for any fixed n

$$\lim_{j \to \infty} H_{n+j}(X) = \lim_{j \to \infty} \frac{1}{n+j} \left[H(X_1, X_2, \dots, X_{n-1}) + \sum_{i=n}^{n+j} H(x_i | x_1, \dots, x_{i-1}) \right] \le$$

Because A: The first term in the sum is an upper bound on each of the other term.

$$\leq \underbrace{\lim_{j \to \infty} \frac{1}{n+j} \cdot H(X_1, X_2, \dots, X_{n-1})}_{0} + \underbrace{\lim_{j \to \infty} \frac{j+1}{n+j} \cdot H(x_n | x_1, \dots, x_{n-1})}_{H(x_n | x_1, \dots, x_{n-1})} = H(x_n | x_1, \dots, x_{n-1}) \forall n$$
$$\lim_{n \to \infty} H_n(X) \leq \lim_{n \to \infty} H(x_n | x_1, \dots, x_{n-1})$$

• From Lemma B: $H_n(X) \ge H(x_n | x_1, x_2, ..., x_{n-1}) \quad \forall n$

$$\lim_{n \to \infty} H_n(X) \ge \lim_{n \to \infty} H(x_n | x_1, x_2, \dots, x_{n-1})$$

The Entropy $H_{\infty}(X)$ *of strict stationary stochastic process:*

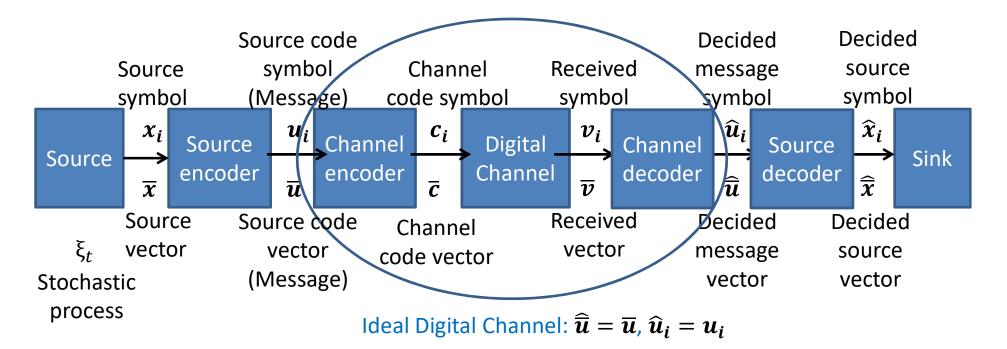
$$H_{\infty}(X) = \underset{n \to \infty}{\lim} H_n(X) = \underset{n \to \infty}{\lim} H(x_n | x_1, x_2, \dots, x_{n-1})$$

Example: German text, 26 possible symbols

First order PDF in %				Discrete random variable X={A,B,C,,X,Y,Z} Size of the event set: n=26
Symbol	%	Symbol	%	Stochastic process: series of X
А	6.51	Ν	9.78	Can be regarded stationary and ergodic.
В	1.89	0	2.51	Realization of the process: Text
С	3.06	Р	0.79	Ctatistics with lighted by Keyl Könforöller
D	5.08	Q	0.02	 Statistics published by Karl Küpfmüller Without knowledge of 1st order PDF
E	17.40	R	7.00	The Entropy has its maximum
F	1.66	S	7.27	
G	3.01	Т	6.15	$H_0(X) = ld \ n \cong 4, 7 \left[\frac{bit}{symbol} \right]$
Н	4.76	U	4.35	From the 1st order PDF
I	7.55	V	0.67	$H(X) = H_1(X) \cong 4, 1\left[\frac{bit}{symbol}\right]$ Forrás: TU Darmstadi
J	0.27	W	1.89	
К	1.21	Х	0.03	 Entropy per symbol from Block Entropy of 2 symbols
L	3.44	Y	0.04	$H_2(X) \cong 3, 0\left[\frac{bit}{symbol}\right]$
Μ	2.53	Z	1.13	 Entropy per symbol of the process
				$H_{\infty}(X) \cong 1, 6\left[\frac{bit}{symbol}\right]$
				Redundancy $R(X) = H_0(X) - H_\infty(X) \cong 3, 1\left[\frac{bit}{symbol}\right]$

Source Coding

The goal of source encoding is to reduce the redundancy.



Source encoding

- ✓ Encoding rule: $\Omega(\overline{x}) = \overline{u}$
- $\checkmark \text{ Explicit: } \Omega(\overline{\boldsymbol{x}}_i) = \overline{\boldsymbol{u}}_i \neq \Omega(\overline{\boldsymbol{x}}_j) = \overline{\boldsymbol{u}}_j$
- Code vectors (code words) should be separable from each other in a sequence of code symbols.

Decoding of source codes

- ✓ Knows the encoding rule, therefore all possible \overline{u} and corresponding \overline{x}
- ✓ Separate the code words in a sequence of code symbols
- ✓ Decoding rule: $\Omega^{-1}(\overline{u}) = \overline{x}$

Source coding, separability

The sequence of source code symbols should be separable to code words (vectors).

We have basically 3 methods to achieve that:

- Using **fixed length code** words; each code should have the same length.
- Using a **specific symbol**, a **separator** to find the limits of the code words.

Space (as separator) at different positions:

Thisisanexampleforseparability.

This I sane x ample for separ ability.

This is an example for separability.

- Applying a so called **instantaneously decodable** encoding, i.e. the code word set should fulfill the **prefix** condition. Note that no code word in this case is a prefix of any other code word. Or with other formulation: not any code word is a continuation of another code word.
 - ✓ Kraft inequality: A necessary and sufficient condition for the lengths of valid code words of a source code to fulfill the prefix condition.

Source coding, separability

Example: Consider a discrete random variable X whit n=4 possible values, PDF of X, and a binary Code symbol set U={0,1}:

 $RV: X = \{x_1, x_2, x_3, x_4\}, \qquad PDF: p(X) = \{p(x_1) = \frac{1}{2}, p(x_2) = \frac{1}{4}, p(x_3) = p(x_4) = \frac{1}{8}\}$

Case	А	В	С	D	Е
x_1	00	0	0	0	0
<i>x</i> ₂	01	1	10	01	10
<i>x</i> ₃	10	00	110	011	110
x_4	11	11	111	0111	1110

Separation of code words

in a sequence of source code symbols:

	0 1 0	1 1 1	0 1 0 0	1 1 0	
A:	x_2	$x_2 x_4$	$ \begin{array}{c cccc} 0 & 1 & 0 & 0 \\ & x_2 & x_1 \\ & & \\ & & \\ x_1 & x_2 & x_1 \\ \end{array} $	x_4	•••
В:		x_2 ? x_4			
C:	$x_1 x_2$	<i>x</i> ₄	$ x_1 x_2 x_1 $	<i>x</i> ₃	
D:			$x_2 x_1$	<i>x</i> ₃	
E:	$x_1 x_2$	x_4	$x_2 x_1$	<i>x</i> ₃	

Entropy H(X)=1.75 [Shannon/symbol] Average of code length L i.e. number of binary digits in average L=2 [bit/symbol]

A: Fixed source code length

D: 0 symbol separate, non prefix

E: Prefix + 0 symbol separate

B: Non-separable

C: Prefix condition

L=1.75 [bit/symbol] L=1.875 [bit/symbol] L=1.875 [bit/symbol]

Source coding, Kraft inequality

Kraft inequality: A **necessary and sufficient** condition for the lengths of valid code words of a source code **to fulfill the prefix** condition.

Design a prefix binary source code with **N possible code words**.

- Consider a **binary tree** with **M levels**.
- Regard the symbols of a code word along the branches of the tree.
- We should cut the tree by each code word ending.

Level Number of Length
$$l_i$$

endings of the code word $l_i = M$
 $M = 2^M$ $l_i = M$
 $M = 1$
 $Length l_i
 $M = 1$
 $M = 1$
 $M = 1$
 $Length l_i
 $M = 1$
 $Length $Length l_i
 $M = 1$
 $Length l_i
 $M = 1$
 $Length l_i
 $Length $Length l_i
 $Length $Length $Length $Length Length $Length Length $Length Length L$$$

Source coding, Kraft inequality

Kraft's inequality:

$$\sum_{i=1}^{N} 2^{-l_i} \le 1 \text{ for } binary \text{ and } \sum_{i=1}^{N} r^{-l_i} \le 1 \text{ for } r - ary \ code \ symbols$$

Using Kraft's inequality, we can also characterize redundancy in prefix codes. Definitions:

- A prefix code satisfying Kraft's inequality with strict inequality $(\sum_{i=1}^{N} 2^{-l_i} < 1)$ is called **redundant**.
- A prefix code satisfying Kraft's inequality with strict equality $(\sum_{i=1}^{N} 2^{-l_i} = 1)$ is called **complete**.
- The prefix redundancy is $1 \sum_{i=1}^{N} 2^{-l_i}$

Theorem: For any redundant prefix code with code word lengths $l_1, l_2, ..., l_{\sigma}$ there exists a complete prefix code with word lengths $m_1, m_2, ..., m_{\sigma}$ such that $m_i \leq l_i$ for all $i \in [1..\sigma]$

Proof: Assume l_{σ} is the longest, then $2^{-l_i} = 2^{z_i} \cdot 2^{-l_{\sigma}}$ (e.g. $2^{-3} = 2 \cdot 2^{-4}$) and the redundancy gap

$$1 - \sum_{i=1}^{N} 2^{-l_i} = 1 - 2^{-l_\sigma} \cdot \sum_{i=1}^{N} 2^{z_i} = 2^{l_\sigma} \cdot 2^{-l_\sigma} - 2^{-l_\sigma} \cdot \sum_{i=1}^{N} 2^{z_i} = 2^{-l_\sigma} \cdot \left(2^{l_\sigma} - \sum_{i=1}^{N} 2^{z_i}\right)$$

The gap is a multiple of $2^{-l_{\sigma}}$ too. We reduce l_{σ} by one bit.

Source coding, Classification

• Basically we have **four types** of source codes according to the **length of source word** (vector of source symbols) and the **length of code word** (vector of code symbols) are fixed or variable.

		length of sou	Known PDF	
		Fixed	Variable	a-priori
length of code word <i>l</i>	Fixed	Type I: Without considering redundancy ASCII	Type III: Lempel-Ziv code	NO
	Variable	Type II: Shannon-Fano code, Huffman code	Type IV: Arithmetic code (Shannon)	YES

Type I: Not really a compressing code, it is rather a mapping Types II, III, IV: Achieve compression, Entropy coding