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A stochastic process is said to be ergodic if its statistical properties can be deduced from a 
single realization (sufficiently long, random sample) of the process.

Ergodicity: If ensemble average always equals time average, then the system is ergodic
Example for WWS i.e.    and   processes

• Mean-ergodic process:

 →

• Auto-covariance-ergodic process:

 →   

• Autocorrelation-ergodic process:

 →

A process which is ergodic in the mean and auto-covariance is sometimes called ergodic in 
the wide sense.
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• Example for Ergodic process 
Each resistor has an associated thermal noise that depends on the temperature. 
Experiment: Take N resistors (N should be very large) and plot the voltage across those 
resistors for a long period. For each resistor you will have a waveform, which is a realization of 
the thermal noise process.

Time average: Calculate the average value of that waveform; 
Ensemble average: There are N waveforms as there are N resistors. Take a particular 
instant of time in all those plots and find the average value; 

Mean-ergodic: Time average = Ensemble average

• Example for Non-ergodic process 
Suppose that we have two coins: one coin is fair and the other has two heads.
Fair coin  0           1             False coin:  1 1 
We choose (at random) one of the coins first, and then perform a sequence of independent 
tosses of our selected coin. 

Ensemble average is  1⁄2  ( 1⁄2 +  1) =  3⁄4
Time average: the long-term average is  1⁄2 for the fair coin and 1 for the two-headed coin.
So the long term time-average is either 1/2 or 1.

The process is not ergodic in mean.
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Goal of communication: Transmit or store not just one random variable but a series of random 
variables.
Let us diel with discrete stochastic processes which are the series (ordered in space or time) of 
random variables. Most of our findings will be also valid for continuous processes.
Recap probability theory: Joint and conditional probability (Bayes’s theorem)
• Two discrete random variables X and Y

,

Short notations:

• n discrete random variables (or short and 

This identity is known as the chain rule of probability.
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Let us start with some definitions:
Vector of n discrete random variables and outcome 
Def.: Conditional Information: The self-information of an event with the knowledge of the 
previous events:

Def.: Conditional Entropy: The average of the conditional information:

 

̅

Def.: Joint Information: Amount of Information conveyed by a block of random variables:

Def.: Joint Entropy or Block Entropy: The average of the joint information:

 

̅
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Cont. Joint Entropy or Block Entropy:
 

̅

 

̅

chain rule

 

̅

Log of product

 

̅
 

̅

= ̅

 

̅

·
1

+

( )

̅

 

̅

·
1

+ ⋯+ ̅

 

̅

·
1

, , … ,

, , … ,

=

Entropy of stochastic processes



Cont. Joint Entropy or Block Entropy:

Let us consider a source without memory, i.e. the outcomes in the series (time or space) are 
independent from each other and stationary at least in first order.

Def.: Discrete Memoryless Source (DMS)

Stationarity 

Def.: Entropy per symbol from Block Entropy of n symbols

Now let us consider the case i.e. Entropy per symbol of stochastic processes .

But how to define and by what conditions exists?
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How to define the Entropy per symbol of stochastic processes

We can observe in two ways:

• As the limit of Entropy per symbol from Block Entropy if the block size increasing:

?

→ →

• OR as the limit of conditional Entropy of a symbol if the set size of condition symbols 
increasing.

?

→

Proof of Gallager (1968) with 3 lemmas:
Lemma A: The conditional Entropy monotone decreasing if the set size of condition symbols 

increasing: 

• less condition -> higher uncertainty: 

• n-th order stationarity:  .
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Lemma B: The Entropy per symbol is higher or equal to the conditional Entropy:

• Because A: The last term in the sum is a lower bound on each of the other term.

Lemma C: The Entropy per symbol monotone decreasing: 

• Because B: the entropy per symbol is higher as the last term:
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Since the Entropy per symbol and the conditional Entropy are 
both nonnegative and nonincreasing with n (Lemmas A and C), both limits must exist.

• The limit of Entropy per symbol: 
→ →

→ →

Because A: The first term in the sum is an upper bound on each of the other term.

→ →

→ →

• From Lemma B: 

→ →

The Entropy of strict stationary stochastic process:

→ →
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First order PDF in %
Symbol % Symbol %
A 6.51 N 9.78
B 1.89 O 2.51
C 3.06 P 0.79
D 5.08 Q 0.02
E 17.40 R 7.00
F 1.66 S 7.27
G 3.01 T 6.15
H 4.76 U 4.35
I 7.55 V 0.67
J 0.27 W 1.89
K 1.21 X 0.03
L 3.44 Y 0.04
M 2.53 Z 1.13

Example: German text, 26 possible symbols
Discrete random variable X={A,B,C,….,X,Y,Z}
Size of the event set: n=26
Stochastic process: series of X
Can be regarded stationary and ergodic.
Realization of the process: Text

Statistics published by Karl Küpfmüller
• Without knowledge of 1st order PDF 

The Entropy has its maximum

• From the 1st order PDF

• Entropy per symbol from Block Entropy of 2 symbols

• Entropy per symbol of the process

Redundancy

Forrás: TU Darmstadt
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Source encoding
 Encoding rule: 
 Explicit:     
 Code vectors (code words) should be 

separable from each other in a 
sequence of code symbols.

Ideal Digital Channel: , 

Source code 
vector 

(Message)

Decoding of source codes
 Knows the encoding rule, therefore 

all possible and corresponding 
 Separate the code words in a 

sequence of code symbols
 Decoding rule: 

The goal of source encoding is to reduce the redundancy. 



The sequence of source code symbols should be separable to code words (vectors).

We have basically 3 methods to achieve that:

• Using fixed length code words; each code should have the same length.

• Using a specific symbol, a separator to find the limits of the code words.

Space (as separator) at different positions:

Thisisanexampleforseparability. 

This I sane x ample for separ ability.

This is an example for separability.

• Applying a so called instantaneously decodable encoding, i.e. the code word set should 
fulfill the prefix condition. Note that no code word in this case is a prefix of any other code 
word. Or with other formulation: not any code word is a continuation of another code 
word.

 Kraft inequality: A necessary and sufficient condition for the lengths of valid code words of 
a source code to fulfill the prefix condition. 

Source coding, separability



Example: Consider a discrete random variable X whit n=4 possible values, PDF of X, and a binary 
Code symbol set U={0,1}:

Case A B C D E A: Fixed source code length
00 0 0 0 0 B: Non-separable
01 1 10 01 10 C: Prefix condition
10 00 110 011 110 D: 0 symbol separate, non prefix
11 11 111 0111 1110 E: Prefix + 0 symbol separate 

Separation of code words Entropy H(X)=1.75 [Shannon/symbol]
in a sequence of source code symbols: Average of code length L

0   1   0   1   1   1   0   1   0   0   1   1   0   … i.e. number of binary digits in average
A: … L=2 [bit/symbol]
B: …     ? …
C: … L=1.75 [bit/symbol]
D: … L=1.875 [bit/symbol]
E: … L=1.875 [bit/symbol]
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Kraft inequality: A necessary and sufficient condition for the lengths of valid code words 
of a source code to fulfill the prefix condition. 

Design a prefix binary source code with N possible code words.

• Consider a binary tree with M levels.

• Regard the symbols of a code word along the branches of the tree.

• We should cut the tree by each code word ending.

Source coding, Kraft inequality
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Kraft inequality:



Source coding, Kraft inequality
Kraft’s inequality:

Using Kraft’s inequality, we can also characterize redundancy in prefix codes.
Definitions: 
• A prefix code satisfying Kraft’s inequality with strict inequality ( ) is called 

redundant. 
• A prefix code satisfying Kraft’s inequality with strict equality ( ) is called 

complete.
• The prefix redundancy is 

Theorem: For any redundant prefix code with code word lengths , ,…, there exists a 
complete prefix code with word lengths , ,…, such that for all 

Proof: Assume is the longest, then (e.g. ) and the 
redundancy gap

The gap is a multiple of too. We reduce by one bit. 



• Basically we have four types of source codes according to the length of source word 
(vector of source symbols) and the length of code word (vector of code symbols) are fixed 
or variable.

Source coding, Classification

length of source word Known PDF
a-priori Fixed Variable

length of code 
word 

Fixed Type I: 
Without 

considering 
redundancy

ASCII

Type III: 
Lempel-Ziv

code

NO

Variable Type II: 
Shannon-Fano

code,
Huffman code

Type IV: 
Arithmetic 

code 
(Shannon)

YES

Type I: Not really a compressing code, it is rather a mapping
Types II, III, IV: Achieve compression, Entropy coding


