MediaWiki API result

This is the HTML representation of the JSON format. HTML is good for debugging, but is unsuitable for application use.

Specify the format parameter to change the output format. To see the non-HTML representation of the JSON format, set format=json.

See the complete documentation, or the API help for more information.

{
    "batchcomplete": "",
    "continue": {
        "gapcontinue": "Rekl\u00e1mszociol\u00f3gia",
        "continue": "gapcontinue||"
    },
    "warnings": {
        "main": {
            "*": "Subscribe to the mediawiki-api-announce mailing list at <https://lists.wikimedia.org/mailman/listinfo/mediawiki-api-announce> for notice of API deprecations and breaking changes."
        },
        "revisions": {
            "*": "Because \"rvslots\" was not specified, a legacy format has been used for the output. This format is deprecated, and in the future the new format will always be used."
        }
    },
    "query": {
        "pages": {
            "23737": {
                "pageid": 23737,
                "ns": 0,
                "title": "Reed-Solomon k\u00f3d",
                "revisions": [
                    {
                        "contentformat": "text/x-wiki",
                        "contentmodel": "wikitext",
                        "*": "{{GlobalTemplate|Infoalap|KodElmZHReedSolKod}}\n\n__TOC__\n\n==Konstrukci\u00f3==\n* <math>\\overline{u}= (u_0, u_1,\\ldots , u_{n-1}) \\quad u_i \\in GF(q)</math>\n* <math>u(x)=u_0x+u_1x+ \\ldots+ u_{n-1}x^{k-1} \\quad deg(u(x))=k-1</math>\n* <math>\\alpha</math> a legkisebb primit\u00edv elem <math>GF(q)</math>-ban (rendje <math>q-1</math>) \n* <math>n=q-1</math> (nem r\u00f6vid\u00edtett R-S k\u00f3d)\n* <math>c_i=u(x)|_{x=\\alpha^i} =u_0+u_1 \\alpha^i+u_2(\\alpha^i)^2+ \\ldots+ u_{k-1}(\\alpha^i)^{k-1}</math>\n* <math>\\overline{c}^T= \\left(\\begin{array}{c} \n\tc_0 \\\\ \n\tc_1 \\\\ \n\t\\vdots \\\\\n\tc_{k-1}\n\t\\end{array} \n\t\\right)</math>\n* <math>\\overline{c}=\\overline{u}\\overline{\\overline{G}}</math>\n* <math>\\overline{\\overline{G}}_{k \\times n}=\n\t\\left( \n\t\\begin{array}{ccccc} \n\t1 & 1  & 1 & \\cdots & 1 \\\\ \n\t1 & \\alpha & \\alpha^2 & \\cdots & \\alpha^{n-1} \\\\\n\t1 & \\alpha^2 & \\alpha^4 & \\cdots & \\alpha^{2(n-1)} \\\\\n\t\\vdots & \\vdots & \\vdots & \\ddots & \\vdots \\\\\n\t1 & \\alpha^{k-1} & \\alpha^{2(k-1)} & \\cdots & \\alpha^{(k-1)(n-1)}\n\t\\end{array} \n\t\\right)</math> gener\u00e1torm\u00e1trix\n\n==Alternat\u00edv konstrukci\u00f3==\n* <math>\\overline{c}= (c_0, c_1,\\ldots , c_{n-1})</math>\n* <math>c(x)=c_0x+c_1x+ \\ldots+ c_{n-1}x^{k-1}</math>\n* <math>c(x)|_{x=\\alpha^i} =c_0+c_1 \\alpha^i+c_2(\\alpha^i)^2+ \\ldots+ c_{k-1}(\\alpha^i)^{i(n-1)}, \\quad i=1, 2, \\ldots, n-k</math>\n* <math>\\overline{\\overline{H}}^T\\overline{c}^T=0</math>\n* <math>\\overline{\\overline{H}}_{(n-k) \\times n}=\n\t\\left( \n\t\\begin{array}{ccccc} \n\t1 & \\alpha & \\alpha^2 & \\cdots & \\alpha^{n-1} \\\\ \n\t1 & \\alpha^2 & \\alpha^4 & \\cdots & \\alpha^{2(n-1)} \\\\\n\t\\vdots & \\vdots & \\vdots & \\ddots & \\vdots \\\\\n\t1 & \\alpha^{n-k} & \\alpha^{2(n-k)} & \\cdots & \\alpha^{(k-1)(n-k)}\n\t\\end{array} \n\t\\right)</math> parit\u00e1sellen\u0151rz\u0151-m\u00e1trix\n\n\n==\u00c1ltal\u00e1nos m\u00f3dszer G \u00e9s H gyors fel\u00edr\u00e1s\u00e1ra==\n\n==K\u00f3dol\u00e1s==\n# <math>\\overline{c}=\\overline{u} \\overline{\\overline{G}}</math>\n* <math>\\overline{u}</math> az \u00fczenet \n* <math>\\overline{\\overline{G}}_{k \\times n}</math> a gener\u00e1torm\u00e1trix\n\n==Dek\u00f3dol\u00e1s==\n\t1.szindr\u00f3mavektor kisz\u00e1m\u00edt\u00e1sa: <math>\\overline{s}=\\overline{v} \\overline{\\overline{H}}</math> \n* <math>\\overline{v}=\\overline{c}+\\overline{e}</math> a vett vektor\n* <math>\\overline{e}</math> a hibavektor\n* <math>\\overline{\\overline{H}}_{(n-k) \\times n}</math> a parit\u00e1sellen\u0151rz\u0151-m\u00e1trix\n# detekci\u00f3 PGZ-algoritmussal\n# lev\u00e1g\u00e1s\n# szorz\u00e1s az inverzm\u00e1trixszal <math>\\overline{u}=\\overline{\\overline{G}}_{k \\times k}^{-1} \\overline{c}</math>\n\n==PGZ-algoritmus ==\n* Peterson-Gorenstein-Zierler\n* \u00e1bra kellene\n===Az algoritmus l\u00e9p\u00e9sei===\n\t\n# <math>\\overline{\\overline{U}}_{r \\times r}=\n\t\\left( \n\t\\begin{array}{cccc} \n\ts_1 & s_1 & \\cdots & s_r \\\\ \n\ts_2 & s_3 & \\cdots & s_{r+1} \\\\\n\t\\vdots & \\vdots & \\ddots & \\vdots \\\\\n\ts_r & s_{r+1} & \\cdots & s_{2r-1} \\\\\n\t\\end{array} \n\t\\right)</math> m\u00e1trixb\u00f3l kell kiv\u00e1lasztani a legnagyobb olyan <math>t \\times t</math> t\u00edpus\u00fa alm\u00e1trixot, amelyre <math>det(\\overline{\\overline{U}}_{t \\times t})\\neq 0</math> modulo n.\n# <math>\\overline{\\overline{U}}_{t \\times t}\\overline{L}=\\overline{V}</math>, ahol <math>\\overline{V}=\\left(\\begin{array}{c} \n\t-s_{t+1} \\\\ \n\t-s_{t+2} \\\\ \n\t\\vdots \\\\\n\t-s_{2t}\n\t\\end{array} \n\t\\right)</math> \u00e9s <math>\\overline{L}=\\left(\\begin{array}{c} \n\tL_{t} \\\\ \n\tL_{t-1} \\\\ \n\t\\vdots \\\\\n\tL_1\n\t\\end{array} \n\t\\right)</math>.\n\tEzt a line\u00e1ris egyenletrendszert modulo n megoldva kapjuk <math> L_1, L_2,\\ldots , L_t</math> \u00e9rt\u00e9keket.\n# <math>L(x)=1+L_1x+L_2x^2+\\ldots +L_tx^t</math> egyenlet gy\u00f6kei adj\u00e1k  <math> X_1^{-1}, X_2^{-1},\\ldots , X_t^{-1}</math> \u00e9rt\u00e9keket, melyeknek ki kell sz\u00e1molni a multiplikat\u00edv inverz\u00e9t modulo n, \u00edgy kapjuk <math> X_1, X_2,\\ldots , X_t</math> \u00e9rt\u00e9keket.\n# Az el\u0151z\u0151 l\u00e9p\u00e9sben kapott <math>X_j</math> \u00e9rt\u00e9kek <math>\\alpha</math> alap\u00fa logarimtus\u00e1t modulo n v\u00e9ve kapjuk a <math>i_j</math>hibahelyeket: <math>\\log_\\alpha X_j=i_j</math>. (A logaritmus sz\u00e1m\u00edt\u00e1shoz fel kell \u00edrni <math>\\alpha</math> hatv\u00e1nyait modulo n.)\n# <math>\\overline{\\overline{A}}_{t \\times t}\\overline{Y}=\\overline{s}</math>, ahol <math>\\overline{\\overline{A}}_{t \\times t}=\\left( \n\t\\begin{array}{cccc} \n\tX_1 & X_2 & \\cdots & X_t \\\\ \n\tX_1^2 & X_2^2 & \\cdots & X_t^2 \\\\\n\t\\vdots & \\vdots & \\ddots & \\vdots \\\\\n\tX_1^t & X_2^t & \\cdots & X_t^t \\\\\n\t\\end{array} \n\t\\right)</math> \u00e9s <math>\\overline{Y}=\\left(\\begin{array}{c} \n\tY_1 \\\\ \n\tY_2 \\\\ \n\t\\vdots \\\\\n\tY_t\n\t\\end{array} \n\t\\right)</math> Ezt a line\u00e1ris egyenletrendszert megoldva kapjuk <math> Y_1, Y_2,\\ldots , Y_t</math> \u00e9rt\u00e9keket. Ezek az <math>Y_j</math> hiba\u00e9rt\u00e9keket.\n\n==Reed-Solomon k\u00f3dok ciklikus gener\u00e1l\u00e1sa==\n\n==Reed-Solomon k\u00f3dok \"gyors\u00edt\u00e1sa\" -- spektr\u00e1lis k\u00f3dol\u00e1s==\n \n==P\u00e9ld\u00e1k==\n\n* p\u00e9lda\n\n-- [[AdamO|adamo]] - 2006.05.01.\n-- [[RebeliSzaboTamas]] - 2008.01.21.\n\n\n[[Category:Infoalap]]"
                    }
                ]
            },
            "25393": {
                "pageid": 25393,
                "ns": 0,
                "title": "Rekl\u00e1mkamp\u00e1ny anal\u00edzis",
                "revisions": [
                    {
                        "contentformat": "text/x-wiki",
                        "contentmodel": "wikitext",
                        "*": "{{GlobalTemplate|Infoszak|InfoMenAnalizis}}\n\n\n__TOC__\n\n==N\u00e9gyl\u00e9p\u00e9ses modellez\u00e9s==\n==Dimezi\u00f3k csoportos\u00edt\u00e1sa ==\n==Eredm\u00e9ny==\n\n\u00c1bra...\n\n-- [[AdamO|adamo]] - 2007.11.26.\n\n\n[[Category:Infoszak]]"
                    }
                ]
            }
        }
    }
}
A lap eredeti címe: „https://wiki.sch.bme.hu/Speciális:ApiHelp